Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(3): 750-753, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300106

RESUMO

We use a phase-sensitive measurement to perform a binary hypothesis testing, i.e., distinguish between one on-axis and two symmetrically displaced Gaussian point spread functions. In the sub-Rayleigh regime, we measure a total error rate lower than allowed by direct imaging. Our results experimentally demonstrate that linear-optical spatial mode transformations can provide useful advantages for object detection compared with conventional measurements, even in the presence of realistic experimental cross talk, paving the way for meaningful improvements in identifying, detecting, and monitoring real-world, diffraction-limited scenes.

2.
Phys Rev Lett ; 129(18): 180502, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374688

RESUMO

We consider passive imaging tasks involving discrimination between known candidate objects and investigate the best possible accuracy with which the correct object can be identified. We analytically compute quantum-limited error bounds for hypothesis tests on any library of incoherent, quasimonochromatic objects when the imaging system is dominated by optical diffraction. We further show that object-independent linear-optical spatial processing of the collected light exactly achieves these ultimate error rates, exhibiting scaling superior to spatially resolved direct imaging as the scene becomes more severely diffraction limited. We apply our results to example imaging scenarios and find conditions under which superresolution object discrimination can be physically realized.

3.
Phys Rev Lett ; 129(1): 010501, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841545

RESUMO

The laws of quantum physics endow superior performance and security for information processing: quantum sensing harnesses nonclassical resources to enable measurement precision unmatched by classical sensing, whereas quantum cryptography aims to unconditionally protect the secrecy of the processed information. Here, we present the theory and experiment for entanglement-enhanced covert sensing, a paradigm that simultaneously offers high measurement precision and data integrity by concealing the probe signal in an ambient noise background so that the execution of the protocol is undetectable with a high probability. We show that entanglement offers a performance boost in estimating the imparted phase by a probed object, as compared to a classical protocol at the same covertness level. The implemented entanglement-enhanced covert sensing protocol operates close to the fundamental quantum limit by virtue of its near-optimum entanglement source and quantum receiver. Our work is expected to create ample opportunities for quantum information processing at unprecedented security and performance levels.

4.
Opt Express ; 29(13): 19305-19318, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266042

RESUMO

In the diffraction-limited near-field propagation regime, free-space optical quantum key distribution (QKD) systems can employ multiple spatial modes to improve their key rate. This improvement can be effected by means of high-dimensional QKD or by spatial-mode multiplexing of independent QKD channels, with the latter, in general, offering higher key rates. Here, we theoretically analyze spatial-mode-multiplexed, decoy-state BB84 whose transmitter mode set is either a collection of phase-tilted, flat-top focused beams (FBs) or the Laguerre-Gaussian (LG) modes. Although for vacuum propagation the FBs suffer a QKD rate penalty relative to the LG modes, their potential ease of implementation make them an attractive alternative. Moreover, in the presence of turbulence, the FB modes may outperform the LG modes.

5.
Opt Express ; 29(5): 7418-7427, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726243

RESUMO

Understanding the fundamental sensitivity limit of an optical sensor requires a full quantum mechanical description of the sensing task. In this work, we calculate the fundamental (quantum) limit for discriminating between pure laser light and thermal noise in a photon-starved regime. The Helstrom bound for discrimination error probability for single mode measurement is computed along with error probability bounds for direct detection, coherent homodyne detection and the Kennedy receiver. A generalized Kennedy (GK) receiver is shown to closely approach the Helstrom limit. We present an experimental demonstration of this sensing task and demonstrate a 15.4 dB improvement in discrimination sensitivity over direct detection using a GK receiver and an improvement of 19.4% in error probability over coherent detection.

6.
Phys Rev Lett ; 124(19): 190502, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469554

RESUMO

In this Letter, we propose a new approach to process high-dimensional quantum information encoded in a photon frequency domain. In contrast to previous approaches based on nonlinear optical processes, no active control of photon energy is required. Arbitrary unitary transformation and projection measurement can be realized with passive photonic circuits and time-resolving detection. A systematic circuit design for a quantum frequency comb with arbitrary size has been given. The criteria to verify quantum frequency correlation has been derived. By considering the practical condition of the detector's finite response time, we show that high-fidelity operation can be readily realized with current device performance. This work will pave the way towards scalable and high-fidelity quantum information processing based on high-dimensional frequency encoding.

7.
J Opt Soc Am A Opt Image Sci Vis ; 37(8): 1288-1299, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749264

RESUMO

Passive imaging receivers that demultiplex an incoherent optical field into a set of orthogonal spatial modes prior to detection can surpass canonical diffraction limits on spatial resolution. However, these mode-sorting receivers exhibit sensitivity to contextual nuisance parameters (e.g., the centroid of a clustered or extended object), raising questions on their viability in realistic scenarios where prior information about the scene is limited. We propose a multistage detection strategy that segments the total recording time between different physical measurements to build up the required prior information for near quantum-optimal imaging performance at sub-Rayleigh length scales. We show, via Monte Carlo simulations, that an adaptive two-stage scheme that dynamically allocates recording time between a conventional direct detection measurement and a binary mode sorter outperforms idealized direct detection alone when no prior knowledge of the object centroid is available, achieving one to two orders of magnitude improvement in mean squared error for simple estimation tasks. Our scheme can be generalized for more sophisticated tasks involving multiple parameters and/or minimal prior information.

8.
Phys Rev Lett ; 114(8): 080503, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768743

RESUMO

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

9.
Phys Rev Lett ; 108(14): 140501, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540777

RESUMO

Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels.

10.
Light Sci Appl ; 11(1): 344, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481525

RESUMO

Quantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their quickly diminishing performance as the operational complexities increase. Here, we present a general architecture, dubbed the quantum receiver enhanced by adaptive learning, to adapt quantum receiver structures to diverse operational conditions. The adaptively learned quantum receiver is experimentally implemented in a hardware platform with record-high efficiency. Combining the architecture and the experimental advances, the error rate is reduced up to 40% over the standard quantum limit in two coherent-state encoding schemes.

11.
Phys Rev Lett ; 106(24): 240502, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770555

RESUMO

Attaining the ultimate (Holevo) limit to the classical capacity of a quantum channel requires the receiver to make joint measurements over long code-word blocks. For a pure-state channel, we show that the Holevo limit can be attained by a receiver that uses a multisymbol unitary transformation on the quantum code word followed by separable projective measurements. We show a concatenated coding and joint-detection architecture to approach the Holevo limit. We then construct some of the first concrete examples of codes and structured joint-detection receivers for the lossy bosonic channel, which can achieve fundamentally higher (superadditive) capacity than conventional receivers that detect each modulation symbol individually. We thereby pave the way for research into codes and structured receivers for reliable communication data rates approaching the Holevo limit.

12.
Nat Commun ; 10(1): 1070, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842425

RESUMO

Despite linear-optical fusion (Bell measurement) being probabilistic, photonic cluster states for universal quantum computation can be prepared without feed-forward by fusing small n-photon entangled clusters, if the success probability of each fusion attempt is above a threshold, [Formula: see text]. We prove a general bound [Formula: see text], and develop a conceptual method to construct long-range-connected clusters where [Formula: see text] becomes the bond percolation threshold of a logical graph. This mapping lets us find constructions that require lower fusion success probabilities than currently known, and settle a heretofore open question by showing that a universal cluster state can be created by fusing 3-photon clusters over a 2D lattice with a fusion success probability that is achievable with linear optics and single photons, making this attractive for integrated-photonic realizations.

13.
Nat Commun ; 10(1): 3516, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388011

RESUMO

Combinatorial optimization problems over large and complex systems have many applications in social networks, image processing, artificial intelligence, computational biology and a variety of other areas. Finding the optimized solution for such problems in general are usually in non-deterministic polynomial time (NP)-hard complexity class. Some NP-hard problems can be easily mapped to minimizing an Ising energy function. Here, we present an analog all-optical implementation of a coherent Ising machine (CIM) based on a network of injection-locked multicore fiber (MCF) lasers. The Zeeman terms and the mutual couplings appearing in the Ising Hamiltonians are implemented using spatial light modulators (SLMs). As a proof-of-principle, we demonstrate the use of optics to solve several Ising Hamiltonians for up to thirteen nodes. Overall, the average accuracy of the CIM to find the ground state energy was ~90% for 120 trials. The fundamental bottlenecks for the scalability and programmability of the presented CIM are discussed as well.

14.
Phys Rev E ; 93(6): 062310, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415283

RESUMO

We analyze the connectivity of an M-layer network over a common set of nodes that are active only in a fraction of the layers. Each layer is assumed to be a subgraph (of an underlying connectivity graph G) induced by each node being active in any given layer with probability q. The M-layer network is formed by aggregating the edges over all M layers. We show that when q exceeds a threshold q_{c}(M), a giant connected component appears in the M-layer network-thereby enabling far-away users to connect using "bridge" nodes that are active in multiple network layers-even though the individual layers may only have small disconnected islands of connectivity. We show that q_{c}(M)≲sqrt[-ln(1-p_{c})]/sqrt[M], where p_{c} is the bond percolation threshold of G, and q_{c}(1)≡q_{c} is its site-percolation threshold. We find q_{c}(M) exactly for when G is a large random network with an arbitrary node-degree distribution. We find q_{c}(M) numerically for various regular lattices and find an exact lower bound for the kagome lattice. Finally, we find an intriguingly close connection between this multilayer percolation model and the well-studied problem of site-bond percolation in the sense that both models provide a smooth transition between the traditional site- and bond-percolation models. Using this connection, we translate known analytical approximations of the site-bond critical region, which are functions only of p_{c} and q_{c} of the respective lattice, to excellent general approximations of the multilayer connectivity threshold q_{c}(M).

15.
Nat Commun ; 6: 8626, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478089

RESUMO

Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

16.
Nat Commun ; 5: 5235, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25341406

RESUMO

Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.

17.
Phys Rev Lett ; 101(25): 253601, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113706

RESUMO

An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA