Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(9): e23147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585277

RESUMO

Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG). After 1-7 days of SMG, osteogenic markers such as alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2) were decreased, accompanied by a decrease in Fzd9 expression. Furthermore, Fzd9 expression decreased in the rat femur after 3 weeks of hindlimb unloading. In contrast, Fzd9 overexpression counteracted the decrease in ALP, OPN, and RUNX2 induced by SMG in osteoblasts. Moreover, SMG regulated phosphorylated glycogen synthase kinase-3ß (pGSK3ß) and ß-catenin expression or sublocalization. However, Fzd9 overexpression did not affect pGSK3ß and ß-catenin expression or sublocalization induced by SMG. In addition, Fzd9 overexpression regulated protein kinase B also known as Akt and extracellular signal-regulated kinase (ERK) phosphorylation and induced F-actin polymerization to form the actin cap, press the nuclei, and increase nuclear pore size, thereby promoting the nuclear translocation of Yes-associated protein (YAP). Our study findings provide mechanistic insights into the role of Fzd9 in triggering actin polymerization and activating YAP to rescue SMG-induced osteoblast dysfunction and suggest that Fzd9 is a potential target to restore osteoblast function in individuals with bone diseases and after spaceflight.


Assuntos
Actinas , Receptores Frizzled , Osteoblastos , Ausência de Peso , Proteínas de Sinalização YAP , Animais , Ratos , Actinas/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Polimerização , Ausência de Peso/efeitos adversos , Receptores Frizzled/metabolismo , Proteínas de Sinalização YAP/metabolismo
2.
Biophys J ; 114(8): 1988-2000, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694875

RESUMO

The periodontal ligament (PDL) is highly ordered connective tissue located between the alveolar bone and cementum. An aligned and organized architecture is required for its physiological function. We applied micropatterning technology to arrange PDL cells in 10- or 20-µm-wide extracellular protein patterns. Cell and nuclear morphology, cytoskeleton, proliferation, differentiation, and matrix metalloproteinase system expression were investigated. Micropatterning clearly elongated PDL cells with a low cell-shape index and low spreading area. The nucleus was also elongated as nuclear height increased, but the nuclear volume remained intact. The cytoskeleton was rearranged to form prominent bundles at cells' peripheral regions. Moreover, proliferation was promoted by 10- and 20-µm micropatterning. Osteogenesis and adipogenesis were each inhibited, but micropatterning increased PDL cells' stem cell markers. ß-catenin was expelled to cytoplasm. YAP/TAZ nuclear localization and activity both decreased, which might indicate their role in micropatterning-regulated differentiation. Collagen Ι expression increased in micropatterned groups. It might be due to the decreased expression of matrix metalloproteinase-1, 2 and the tissue inhibitor of metalloproteinase-1 gene expression elevation in micropatterned groups. The findings of this study provide insight into the effects of a micropatterned surface on PDL cell behavior and may be applicable in periodontal tissue regeneration.


Assuntos
Microtecnologia/métodos , Ligamento Periodontal/citologia , Adolescente , Adulto , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Criança , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Homeostase , Humanos , Transporte Proteico , Adulto Jovem , beta Catenina/metabolismo
3.
Sci Rep ; 8(1): 7750, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773877

RESUMO

Ground source heat pump (GSHP) system has been installed as the air-conditioning system worldwide due to it has the characteristics of high efficiency, easy access and environmental protection. Since ground heat exchanger (GHE) plays a key role in the performance of GSHPs, many models of GHE have been proposed to simulate temperature distribution around the borehole. However, most of these models depict only the heat conduction process between buried pipes and surrounding soil based on the line source model or cylindrical source model. And these models do not consider water transfer under the action of heat source, which can cause some prediction errors. The objective of this study is to provide a numerical model to simulate the spatiotemporal distribution of temperature and moisture caused by a GHE with constant temperature in unsaturated soils. The numerical model is developed by establishing two tridiagonal matrices and adopting Thomas algorithm to achieve the programming. The experiment is operated at the Taiyuan University of Technology and the comparisons between modeled and experimental data prove the high accuracy of this model. The model shows significant engineering values in designs and operations of GSHP.

4.
J Endod ; 42(9): 1355-61, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27395474

RESUMO

INTRODUCTION: Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. METHODS: Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. RESULTS: Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. CONCLUSIONS: Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Hidróxido de Cálcio/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adolescente , Fosfatase Alcalina/metabolismo , Western Blotting , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
5.
J Biomech ; 49(4): 572-9, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26892895

RESUMO

Shear stress is one of the main stress type produced by speech, mastication or tooth movement. The mechano-response of human periodontal ligament (PDL) cells by shear stress and the mechanism are largely unknown. In our study, we investigated the effects of fluid shear stress on proliferation, migration and osteogenic potential of human PDL cells. 6dyn/cm(2) of fluid shear stress was produced in a parallel plate flow chamber. Our results demonstrated that fluid shear stress rearranged the orientation of human PDL cells. In addition, fluid shear stress inhibited human PDL cell proliferation and migration, but increased the osteogenic potential and expression of several growth factors and cytokines. Our study suggested that shear stress is involved in homeostasis regulation in human PDL cells. Inhibiting proliferation and migration potentially induce PDL cells to respond to mechanical stimuli in order to undergo osteogenic differentiation.


Assuntos
Líquido Extracelular/metabolismo , Osteogênese , Ligamento Periodontal/citologia , Resistência ao Cisalhamento , Estresse Mecânico , Fenômenos Biomecânicos , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA