RESUMO
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among â¼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Cultivadas , Testes Genéticos , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Ligação Proteica , Proteoma/análise , RNA Interferente Pequeno , Transcrição GênicaRESUMO
Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton's Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , DNA/química , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
Millions of individuals are infected with and die from tuberculosis (TB) each year, and multidrug-resistant (MDR) strains of TB are increasingly prevalent. As such, there is an urgent need to identify novel drugs to treat TB infections. Current frontline therapies include the drug isoniazid, which inhibits the essential NADH-dependent enoyl-acyl-carrier protein (ACP) reductase, InhA. To inhibit InhA, isoniazid must be activated by the catalase-peroxidase KatG. Isoniazid resistance is linked primarily to mutations in the katG gene. Discovery of InhA inhibitors that do not require KatG activation is crucial to combat MDR TB. Multiple discovery efforts have been made against InhA in recent years. Until recently, despite achieving high potency against the enzyme, these efforts have been thwarted by lack of cellular activity. We describe here the use of DNA-encoded X-Chem (DEX) screening, combined with selection of appropriate physical properties, to identify multiple classes of InhA inhibitors with cell-based activity. The utilization of DEX screening allowed the interrogation of very large compound libraries (1011 unique small molecules) against multiple forms of the InhA enzyme in a multiplexed format. Comparison of the enriched library members across various screening conditions allowed the identification of cofactor-specific inhibitors of InhA that do not require activation by KatG, many of which had bactericidal activity in cell-based assays.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas PequenasRESUMO
Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes. For this study, we chose the G-quartet sequence found in the c-myc promoter as a primary target. Compounds enriched using affinity-mediated selection against this target demonstrated high-affinity binding and high specificity over DNA sequences not containing G-quartet motifs. These compounds demonstrated a moderate ability to discriminate between different G-quartet motifs and also demonstrated activity in a cell-based assay, suggesting direct target engagement in the cell. DNA-encoded chemical libraries and affinity-mediated selection are uniquely suited to discover binders to targets that have no inherent activity outside of a cellular context, and they may also be of utility in other nucleic acid structural motifs.
Assuntos
DNA/química , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Ressonância de Plasmônio de SuperfícieRESUMO
Despite major advances in our understanding of many aspects of human papillomavirus (HPV) biology, HPV entry is poorly understood. To identify cellular genes required for HPV entry, we conducted a genome-wide screen for siRNAs that inhibited infection of HeLa cells by HPV16 pseudovirus. Many retrograde transport factors were required for efficient infection, including multiple subunits of the retromer, which initiates retrograde transport from the endosome to the trans-Golgi network (TGN). The retromer has not been previously implicated in virus entry. Furthermore, HPV16 capsid proteins arrive in the TGN/Golgi in a retromer-dependent fashion during entry, and incoming HPV proteins form a stable complex with retromer subunits. We propose that HPV16 directly engages the retromer at the early or late endosome and traffics to the TGN/Golgi via the retrograde pathway during cell entry. These results provide important insights into HPV entry, identify numerous potential antiviral targets, and suggest that the role of the retromer in infection by other viruses should be assessed.
Assuntos
Genoma Humano/genética , Papillomaviridae/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Internalização do Vírus , Complexo de Golgi/virologia , Células HeLa , Papillomavirus Humano 16/fisiologia , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Ligação Proteica , Transporte Proteico , Reprodutibilidade dos Testes , Proteínas Virais/metabolismoRESUMO
DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.
Assuntos
Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Policetídeo Sintases , Bibliotecas de Moléculas Pequenas , Tioléster Hidrolases , Animais , Humanos , Camundongos , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Policetídeo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
RESUMO
Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose , Conformação Molecular , DNA , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.
Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , CamundongosRESUMO
WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 µM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.
Assuntos
DNA , Bibliotecas de Moléculas Pequenas , DNA/química , Biblioteca Gênica , Ligantes , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/químicaRESUMO
DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 µM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 µM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.
Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ligantes , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/químicaRESUMO
DNA-encoded small molecule libraries (DELs) have enabled discovery of novel inhibitors for many distinct protein targets of therapeutic value. We demonstrate a new approach applying machine learning to DEL selection data by identifying active molecules from large libraries of commercial and easily synthesizable compounds. We train models using only DEL selection data and apply automated or automatable filters to the predictions. We perform a large prospective study (â¼2000 compounds) across three diverse protein targets: sEH (a hydrolase), ERα (a nuclear receptor), and c-KIT (a kinase). The approach is effective, with an overall hit rate of â¼30% at 30 µM and discovery of potent compounds (IC50 < 10 nM) for every target. The system makes useful predictions even for molecules dissimilar to the original DEL, and the compounds identified are diverse, predominantly drug-like, and different from known ligands. This work demonstrates a powerful new approach to hit-finding.
Assuntos
DNA/química , Descoberta de Drogas/métodos , Redes Neurais de Computação , Bibliotecas de Moléculas Pequenas/química , Epóxido Hidrolases/antagonistas & inibidores , Receptor alfa de Estrogênio/antagonistas & inibidores , Ligantes , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidoresRESUMO
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Assuntos
DNA/genética , Mutação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Humanos , Ligantes , Proteínas/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genéticaRESUMO
A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.
Assuntos
Descoberta de Drogas , Biblioteca Gênica , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas/métodos , Oligonucleotídeos/química , Oligonucleotídeos/genéticaRESUMO
New pyrrolo[1,2-a]quinoxaline-2- or -4-carboxylic acid hydrazide derivatives were synthesized from nitroaniline or 1,2-phenylenediamine, and evaluated in vitro for their antimycobacterial activity as part of a TAACF TB screening program. Two compounds 7c and 13 showed an interesting activity at 6.25 microg/mL against Mycobacterium tuberculosis H37Rv, with a 94 and 100 percentage inhibition, respectively.