Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Exp Brain Res ; 226(2): 285-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23411676

RESUMO

Evidence suggests that the serotonin 2A receptor (5-HT2AR) modulates the therapeutic activity of selective serotonin reuptake inhibitors (SSRIs). Indeed, among the genetic factors known to influence the individual response to antidepressants, the HTR2A gene has been associated with SSRIs response in depressed patients. However, in these pharmacogenetic studies, the consequences of HTR2A gene polymorphisms on 5-HT2AR expression or function are lacking and the precise role of this receptor is still matter of debate. This study examined the effect of 5-HT2AR agonism or antagonism with DOI and MDL100907, respectively, on the serotonergic system and the antidepressant-like activity of the SSRI escitalopram in mouse. The 5-HT2AR agonist DOI decreased the firing rate of 5-HT neurons in the dorsal raphe (DR) nucleus of 5-HT2AR(+/+) anesthetized mice. This inhibitory response persisted in 5-HT2CR(-/-) but was completely blunted in 5-HT2AR(-/-) mutants. Moreover, the suppressant effect of DOI on DR 5-HT neuronal activity in 5-HT2AR(+/+) mice was attenuated by the loss of noradrenergic neurons induced by the neurotoxin DSP4. Conversely, in 5-HT2AR(+/+) mice, the pharmacological inactivation of the 5-HT2AR by the selective antagonist MDL100907 reversed escitalopram-induced decrease in DR 5-HT neuronal activity. Remarkably, in microdialysis experiments, a single injection of escitalopram increased cortical extracellular 5-HT, but not NE, levels in awake 5-HT2AR(+/+) mice. Although the addition of MDL100907 did not potentiate 5-HT neurotransmission, it allowed escitalopram to increase cortical NE outflow and consequently to elicit an antidepressant-like effect in the forced swimming test. These results suggest that the blockade of the 5-HT2AR may strengthen the antidepressant-like effect of escitalopram by facilitating the enhancement of the brain NE transmission. They provide support for the use of atypical antipsychotics with SSRIs as a relevant antidepressant augmentation strategy.


Assuntos
Neurônios Adrenérgicos/metabolismo , Antidepressivos/administração & dosagem , Citalopram/administração & dosagem , Depressão/metabolismo , Receptor 5-HT2A de Serotonina/deficiência , Antagonistas da Serotonina/administração & dosagem , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Depressão/tratamento farmacológico , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Camundongos , Camundongos Knockout , Receptor 5-HT2A de Serotonina/genética , Fatores de Tempo
2.
Psychoneuroendocrinology ; 140: 105711, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305406

RESUMO

Apelin is a small peptide secreted by the adipose tissue notably in conditions of obesity-induced hyper-insulinemia. Apelin exerts a range of physiological functions at the periphery including the improvement of insulin sensitivity and the increase of muscle strength or cardiac contractibility. Interestingly, the brain is endowed with a high density of APJ, the single target of apelin, and growing evidence suggests various central actions of this adipokine. Recent studies reported that the intracerebroventricular infusion of apelin modulates emotional states in middle age stressed animals. However, results are so far been mixed and have not allowed for definitive conclusions about the impact of apelin on anxio-depressive-like phenotype. This study aims 1) to evaluate whether serum apelin levels are associated with mood in older adults and 2) to determine the impact of the genetic apelin inactivation in 12-month old mice fed a standard diet (STD) or in 6-month old mice fed a high fat diet (HFD). A higher plasma apelin level was associated with higher depressive symptoms in older adults. In line with these clinical findings, 12-month old apelin knock-out (Ap-/-) mice displayed a spontaneous antidepressant-like phenotype. In a marked contrast, 6-month old Ap-/- mice harbored a higher degree of peripheral insulin resistance than wild-types in response to HFD and were more prone to develop anxiety while the depressive-like state was not modified. We also provided evidence that such anxious behavior was associated with an impairment of central serotonergic and dopaminergic neuronal activities. Finally, although the insulin sensitizing drug metformin failed to reverse HFD-induced insulin resistance in 6-month old Ap-/- mice, it reversed their anxious phenotype. These results emphasize a complex contribution of apelin in the regulation of emotional state that might depend on the age and the metabolic status of the animals. Further investigations are warranted to highlight the therapeutic potential of manipulating the apelinergic system in mood-related disorders.


Assuntos
Resistência à Insulina , Adipocinas , Animais , Apelina , Dieta Hiperlipídica , Insulina , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos
3.
Nature ; 436(7047): 103-7, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001069

RESUMO

Worldwide, 100 million people are expected to die this century from the consequences of nicotine addiction, but nicotine is also known to enhance cognitive performance. Identifying the molecular mechanisms involved in nicotine reinforcement and cognition is a priority and requires the development of new in vivo experimental paradigms. The ventral tegmental area (VTA) of the midbrain is thought to mediate the reinforcement properties of many drugs of abuse. Here we specifically re-expressed the beta2-subunit of the nicotinic acetylcholine receptor (nAChR) by stereotaxically injecting a lentiviral vector into the VTA of mice carrying beta2-subunit deletions. We demonstrate the efficient re-expression of electrophysiologically responsive, ligand-binding nicotinic acetylcholine receptors in dopamine-containing neurons of the VTA, together with the recovery of nicotine-elicited dopamine release and nicotine self-administration. We also quantified exploratory behaviours of the mice, and showed that beta2-subunit re-expression restored slow exploratory behaviour (a measure of cognitive function) to wild-type levels, but did not affect fast navigation behaviour. We thus demonstrate the sufficient role of the VTA in both nicotine reinforcement and endogenous cholinergic regulation of cognitive functions.


Assuntos
Cognição/fisiologia , Expressão Gênica , Nicotina/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Locomoção/fisiologia , Camundongos , Morfina/administração & dosagem , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nicotina/administração & dosagem , Nicotina/farmacologia , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
4.
J Frailty Aging ; 10(2): 121-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575700

RESUMO

Aging is the major risk factor for the development of chronic diseases. After decades of research focused on extending lifespan, current efforts seek primarily to promote healthy aging. Recent advances suggest that biological processes linked to aging are more reliable than chronological age to account for an individual's functional status, i.e. frail or robust. It is becoming increasingly apparent that biological aging may be detectable as a progressive loss of resilience much earlier than the appearance of clinical signs of frailty. In this context, the INSPIRE program was built to identify the mechanisms of accelerated aging and the early biological signs predicting frailty and pathological aging. To address this issue, we designed a cohort of outbred Swiss mice (1576 male and female mice) in which we will continuously monitor spontaneous and voluntary physical activity from 6 to 24 months of age under either normal or high fat/high sucrose diet. At different age points (6, 12, 18, 24 months), multiorgan functional phenotyping will be carried out to identify early signs of organ dysfunction and generate a large biological fluids/feces/organs biobank (100,000 samples). A comprehensive correlation between functional and biological phenotypes will be assessed to determine: 1) the early signs of biological aging and their relationship with chronological age; 2) the role of dietary and exercise interventions on accelerating or decelerating the rate of biological aging; and 3) novel targets for the promotion of healthy aging. All the functional and omics data, as well as the biobank generated in the framework of the INSPIRE cohort will be available to the aging scientific community. The present article describes the scientific background and the strategies employed for the design of the INSPIRE Mouse cohort.


Assuntos
Envelhecimento , Animais , Estudos de Coortes , Feminino , Masculino , Camundongos
5.
Neuroscience ; 451: 149-163, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039523

RESUMO

In the present study, we examined the neurobehavioral effects of a sensory functional food ingredient mainly based on Citrus sinensis extracts (D11399) using a battery of tests recapitulating various endophenotypes of depression such as anxiety in the open field (OF), the elevated plus-maze (EPM), and the novelty suppressed feeding (NSF), self-care in the splash test (ST), despair in the forced swimming task (FST) but also anhedonia in the sucrose preference test (SPT) in mice. A one-week oral administration of D11399 promoted anxiolytic- and antidepressant-like responses in naïve mice subjected to the NSF and FST. In a marked contrast, the administration of D11399 by oral gavage or the inhibition of olfaction by methimazole prevented such beneficial effects. We further investigated the neurobehavioral properties of a ten-week oral administration of D11399 in the corticosterone (CORT) mouse model of depression. Interestingly, D11399 also elicited anxiolytic- and antidepressant-like effects in various paradigms. To characterize the putative underpinning neurobiological mechanisms in CORT mice, we investigated whether cellular and molecular processes commonly associated with antidepressant responses such as monoaminergic neurotransmission and neuronal maturation in the hippocampus were impacted. Although D11399 did not modify the hippocampal extracellular levels of monoamines (i.e. serotonin and norepinephrine), it reversed the ability of CORT to decrease serotonin neurons firing rate in the dorsal raphe and neuronal maturation in the hippocampus. These findings suggest that the anxiolytic- and antidepressant-like effects of this sensory functional food ingredient are closely related with olfaction and likely a concomitant change in the activity of the central serotonergic system. Further experiments are warranted to precise the neuronal circuits linking sensorial and emotional modalities and identify innovative therapeutic strategies aimed to relieve depressive endophenotypes.


Assuntos
Citrus , Ingredientes de Alimentos , Animais , Antidepressivos/farmacologia , Ansiedade , Comportamento Animal , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Olfato
6.
Neuropharmacology ; 55(6): 1006-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18761360

RESUMO

Antidepressants such as Selective Serotonin Reuptake Inhibitors (SSRI) act as indirect agonists of serotonin (5-HT) receptors. Although these drugs produce a rapid blockade of serotonin transporters (SERTs) in vitro, several weeks of treatment are necessary to observe clinical benefits. This paradox has not been solved yet. Recent studies have identified modifications of intracellular signaling proteins and target genes that could contribute to antidepressant-like activity of SSRI (e.g., increases in neurogenesis and BDNF protein levels), and may explain, at least in part, their long delay of action. Although these data suggest a positive regulation of 5-HT on the expression of the gene coding for BDNF, the reciprocal effects of BDNF on brain 5-HT neurotransmission remains poorly documented. To study the impact of BDNF on serotonergic activity, a dual experimental strategy was used to analyze neurochemical and behavioral consequences of its decrease (strategy 1) or increase (strategy 2) in the brain of adult male mice. (1) In heterozygous BDNF+/- mice in which brain BDNF protein levels were decreased by half, an enhancement of basal extracellular 5-HT levels (5-HText) that induced a down-regulation of SERT, i.e., a decrease in its capacity to reuptake 5-HT, was found in the hippocampus. In addition, the SSRI, paroxetine, failed to increase hippocampal 5-HText in BDNF+/- mice, while it produces robust effects in wild-type littermates. Thus, BDNF+/- mice can be viewed as an animal model of genetic resistance to serotonergic antidepressant drugs. (2) In wild-type BDNF+/+ mice, the effects of intra-hippocampal (vHi) injection of BDNF (100 ng) in combination with a SSRI was examined by using intracerebral microdialysis and behavioral paradigms that predict an antidepressant- and anxiolytic-like activity of a molecule [the forced swim test (FST) and the open field paradigm (OF) respectively]. BDNF induced a rapid and transient increase in paroxetine response on 5-HText in the adult hippocampus, which was correlated with a potentiation of its antidepressant-like activity in the FST. The effects of BDNF were selectively blocked by K252a, an antagonist of its high-affinity TrkB receptor. Such a correlation between neurochemical and behavioral effects of [BDNF+SSRI] co-administration suggests that its antidepressant-like activity is linked to the activation of 5-HT neurotransmission in the adult hippocampus. BDNF also had a facilitatory effect on anxiety-like behavior in the OF test, and paroxetine prevented this anxiogenesis. What was the mechanism by which BDNF exerted these latter effects? Surprisingly, by using zero net flux method of quantitative microdialysis in vivo, we found that an intra-hippocampal BDNF injection in wild-type mice decreased the functional activity of SERT as observed in BDNF+/- mice. However, the decreased capacity of SERT to reuptake 5-HT was not associated to an increase in basal 5-HText in the hippocampus of WT mice. Interestingly, using in situ hybridization experiments indicated that TrkB receptor mRNA was expressed in the hippocampus and dorsal raphe nucleus in adult mice suggesting that the neurochemical and behavioral effects of intra-hippocampal BDNF injection can mobilize both pre- and post-synaptic elements of the brain 5-HT neurotransmission. Taken together, these set of experiments unveiled a relative opposition of neurochemical and behavioral responses following either a decrease (in BDNF+/- mutant mice) or an increase in brain BDNF levels (bilateral intra-hippocampal injection) in adult mice. In view of developing new antidepressant drug strategy, a poly-therapy combining BDNF with a chronic SSRI treatment could thus improve the efficacy of current medications.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/deficiência , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
7.
Neuropharmacology ; 112(Pt A): 198-209, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211253

RESUMO

Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT]ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT]ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT]ext following intra-mPFCx ketamine bilateral injection (0.25 µg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT]ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following the blockade of glutamatergic NMDA receptors. Tight interactions between mPFCx glutamatergic and serotonergic systems may explain the differences in this activity between ketamine and fluoxetine in vivo. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Assuntos
Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Ansiedade/fisiopatologia , Depressão/fisiopatologia , Ketamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Serotonina/metabolismo , Animais , Depressão/prevenção & controle , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Fluoxetina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia
8.
Behav Brain Res ; 172(2): 256-63, 2006 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-16806519

RESUMO

Substance P antagonists of the neurokinin-1 receptor type (NK1) have growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurons. In line with this assumption, previous intracerebral in vivo microdialysis experiments provided evidence that the NK1 receptor antagonists did not change basal cortical 5-HT levels. However, we found that increases in cortical 5-HT overflow caused by systemic injection of the selective serotonin reuptake inhibitor (SSRI), paroxetine was higher in freely moving (C57BL/6x129sv) NK1-/- mutants than in wild-type NK1+/+ mice. More recently, a pharmacological study has led to a similar conclusion since GR205171, a NK1 receptor antagonist, potentiated paroxetine-induced increases in cortical 5-HT dialysate following its acute systemic or intra-raphe administration to wild-type mice . In the present study, we tested whether an acute combination of SSRI and NK1 receptor antagonist could display antidepressant-like activity using the forced swimming test in Swiss mice. We found that a single systemic dose of GR205171 (10 and 30 mg/kg, i.p.) had no effect by itself. However, it selectively potentiated the antidepressant-like activity of subactive doses of two serotonergic antidepressant drugs, citalopram and paroxetine (without psychomotor stimulant activity), but not that of noradrenaline reuptake inhibitor, desipramine. In agreement with neurochemical data, the present study confirms that co-administration of a NK1 receptor antagonist with an antidepressant drug such as a SSRI may have a therapeutic potential to improve the treatment of major depressive episodes in human compared to SSRI alone.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Antidepressivos/farmacologia , Transtorno Depressivo/tratamento farmacológico , Antagonistas dos Receptores de Neurocinina-1 , Inibidores da Captação de Neurotransmissores/farmacologia , Piperidinas/farmacologia , Tetrazóis/farmacologia , Análise de Variância , Animais , Citalopram/farmacologia , Transtorno Depressivo/etiologia , Desipramina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Reação de Fuga/efeitos dos fármacos , Masculino , Camundongos , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/complicações , Natação
9.
Eur J Pain ; 19(3): 322-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25045036

RESUMO

BACKGROUND: Chronic neuropathic pain can lead to anxiety and depression. Drugs that block reuptake of serotonin, norepinephrine and/or dopamine are widely used to treat depression, and have emerged as useful drugs in the treatment of neuropathic pain. This study compared the acute antinociceptive effects of NS18283, a novel triple monoamine reuptake inhibitor (MRI) with indatraline, venlafaxine and escitalopram in a mouse model of neuropathic pain. METHOD: Neuropathic pain-like behaviours were induced in mice by repeated injections of oxaliplatin (OXA), and assessed using the von Frey hair test, the cold plate test and the thermal preference plate test. Anxio/depressive phenotype and antidepressant-like properties of compounds were assessed by the novelty suppressed feeding test and the tail suspension test, respectively. RESULTS: In vivo microdialysis experiments showed that each MRI increased extracellular serotonin, norepinephrine and/or dopamine levels in the cingulate cortex, in agreement with their in vitro reuptake inhibitory properties. Indatraline (3 mg/kg) reversed the full repertoire of OXA-induced neuropathic hypersensitivity. NS18283 (10 mg/kg) reversed OXA-induced mechano-hypersensitivity and cold allodynia. Venlafaxine (16 mg/kg) and escitalopram (4 mg/kg) only reversed cold allodynia and mechano-hypersensitivity, respectively. All MRIs produced antidepressant-like activity in anxio/depressive phenotype of OXA mice. CONCLUSIONS: Acute administration of drugs that enhance the activity of serotonin, norepinephrine and dopamine neurotransmission within nociceptive pathways may provide a broader spectrum of antinociception than dual or selective reuptake inhibitors in animal models of neuropathic pain. Whether similar observations would occur after repeated administration of such compounds in an attempt to simulate dosing in humans, or be compromised by dopaminergic-mediated adverse effects warrants further investigation.


Assuntos
Analgésicos/farmacologia , Citalopram/farmacologia , Hiperalgesia/tratamento farmacológico , Indanos/farmacologia , Metilaminas/farmacologia , Neuralgia/tratamento farmacológico , Inibidores da Captação de Neurotransmissores/farmacologia , Cloridrato de Venlafaxina/farmacologia , Analgésicos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Citalopram/administração & dosagem , Modelos Animais de Doenças , Indanos/administração & dosagem , Masculino , Metilaminas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Captação de Neurotransmissores/administração & dosagem , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Cloridrato de Venlafaxina/administração & dosagem
10.
J Neurosci Methods ; 140(1-2): 53-7, 2004 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-15589334

RESUMO

An important concern about microdialysis methodology is the histological validation of the dialysis probe implantation site in brain tissue of rodents (rat, mouse). Several methods have been described on standard histological staining (i.e., cresyl violet, formalin fixation, fast green perfusion, etc.). However, this methodology is time consuming. These requirements are not compatible with a histological validation prior to analysis of microdialysis samples. Here, we developed a new method to locate the track of the dialysis probe in the rodent brain. This method is based on a digital photomicrograph of a coronal section of the rodent frozen brain. The fitting of an appropriate coronal diagram of the rats' and mice' brain atlas with this photomicrograph, allowed us to locate precisely and quickly the track of the dialysis probe.


Assuntos
Anatomia Artística/métodos , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/cirurgia , Ilustração Médica , Microdiálise/instrumentação , Microdiálise/métodos , Fotomicrografia/métodos , Anatomia Artística/instrumentação , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/instrumentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos/normas , Fotomicrografia/instrumentação , Ratos , Ratos Wistar , Especificidade da Espécie , Técnicas Estereotáxicas/tendências , Fatores de Tempo
11.
Neuroscience ; 274: 357-68, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24909899

RESUMO

Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 µg/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Distúrbios do Sono por Sonolência Excessiva/fisiopatologia , Animais , Encéfalo/fisiopatologia , Corticosterona , Escuridão , Eletroencefalografia , Emoções , Masculino , Camundongos Endogâmicos C57BL , Fotoperíodo , Sono REM/fisiologia , Ritmo Teta , Vigília
12.
Transl Psychiatry ; 3: e253, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23632457

RESUMO

The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/fisiopatologia , Fluoxetina/farmacologia , Expressão Gênica/fisiologia , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Piperazinas/farmacologia , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA