Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Lipid Res ; 52(6): 1247-1255, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421848

RESUMO

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATX(F/F)/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO mice and their control littermates were fed either a normal or a high-fat diet (HFD) (45% fat) for 13 weeks. FATX-KO mice showed a strong decrease (up to 90%) in ATX expression in white and brown adipose tissue, but not in other ATX-expressing organs. This was associated with a 38% reduction in plasma LPA levels. When fed an HFD, FATX-KO mice showed a higher fat mass and a higher adipocyte size than control mice although food intake was unchanged. This was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)γ2 and of PPAR-sensitive genes (aP2, adiponectin, leptin, glut-1) in subcutaneous white adipose tissue, as well as in an increased tolerance to glucose. These results show that adipose-ATX is a negative regulator of fat mass expansion in response to an HFD and contributes to plasma LPA levels.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Modelos Animais de Doenças , Lisofosfolipídeos , Complexos Multienzimáticos , Obesidade/metabolismo , PPAR gama/metabolismo , Fosfodiesterase I , Pirofosfatases , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Tecido Adiposo Branco/fisiopatologia , Animais , Glicemia/análise , Tamanho Celular , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Feminino , Efeito Fundador , Deleção de Genes , Teste de Tolerância a Glucose , Insulina/sangue , Lisofosfolipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Obesidade/genética , Obesidade/fisiopatologia , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Fosfodiesterase I/deficiência , Fosfodiesterase I/genética , Diester Fosfórico Hidrolases , Pirofosfatases/deficiência , Pirofosfatases/genética
2.
Am J Physiol Endocrinol Metab ; 298(6): E1161-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20233941

RESUMO

Apelin, an adipocyte-secreted factor upregulated by insulin, is increased in adipose tissue (AT) and plasma with obesity. Apelin was recently identified as a new player in the control of glucose homeostasis. However, the regulation of apelin and APJ (apelin receptor) expression in skeletal muscle in relation to insulin resistance or type 2 diabetes is not known. Thus we studied apelin and APJ expression in AT and muscle in different mice models of obesity and in type 2 diabetic patients. In insulin-resistant high-fat (HF)-fed mice, apelin and APJ expression were increased in AT compared with control. This was not the case in AT of highly insulin-resistant db/db mice. In skeletal muscle, apelin expression was similar in control and HF-fed mice and decreased in db/db mice. APJ expression was decreased in both HF-fed and db/db mice. Control subjects and type 2 diabetic patients were subjected to a hyperinsulinemic-euglycemic clamp, and tissues biopsies were obtained before and at the end of the clamp. There was no significant difference in basal apelin and APJ expression in AT and muscle between control and diabetic patients. However, apelin plasma levels were significantly increased in diabetic patients. During the clamp, hyperinsulinemia increased apelin and APJ expression in AT of control but not in diabetic subjects. In muscle, only APJ mRNA levels were increased in control but also in diabetic patients. Taken together, these data show that apelin and APJ expression in mice and humans is regulated in a tissue-dependent manner and according to the severity of insulin resistance.


Assuntos
Tecido Adiposo/fisiologia , Proteínas de Transporte/biossíntese , Diabetes Mellitus Tipo 2/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Músculo Esquelético/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Adipocinas , Tecido Adiposo/metabolismo , Adulto , Animais , Apelina , Receptores de Apelina , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Humanos , Insulina/sangue , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Regul Pept ; 150(1-3): 33-7, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18501443

RESUMO

By using pangenomic microarray, we identified apelin as a unique adipokine up regulated by the transcriptional co-activator peroxisome proliferator-activated receptor gamma (PPARgamma) co-activator 1alpha (PGC-1alpha) in human white adipocytes. We investigated its regulation in vitro and in vivo. Overexpression of PGC-1alpha by adenovirus in human adipocytes induces apelin expression and secretion. Pharmacological induction of cAMP, an upstream regulator of endogenous PGC-1alpha expression, up regulates apelin gene expression and also apelin secretion in human and mice adipocytes. Moreover, during cold exposure in mice, a physiological situation known to induce both cAMP and PGC-1alpha, apelin expression in adipocytes and plasma levels were increased. This is the first demonstration that PGC-1alpha is involved in the regulation of an adipokine gene expression and release.


Assuntos
Adipócitos/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo Branco/citologia , Animais , Apelina , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Am Soc Nephrol ; 18(12): 3110-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18003779

RESUMO

Tubulointerstitial fibrosis in chronic renal disease is strongly associated with progressive loss of renal function. We studied the potential involvement of lysophosphatidic acid (LPA), a growth factor-like phospholipid, and its receptors LPA(1-4) in the development of tubulointerstitial fibrosis (TIF). Renal fibrosis was induced in mice by unilateral ureteral obstruction (UUO) for up to 8 d, and kidney explants were prepared from the distal poles to measure LPA release into conditioned media. After obstruction, the extracellular release of LPA increased approximately 3-fold. Real-time reverse transcription PCR (RT-PCR) analysis demonstrated significant upregulation in the expression of the LPA(1) receptor subtype, downregulation of LPA3, and no change of LPA2 or LPA4. TIF was significantly attenuated in LPA1 (-/-) mice compared to wild-type littermates, as measured by expression of collagen III, alpha-smooth muscle actin (alpha-SMA), and F4/80. Furthermore, treatment of wild-type mice with the LPA1 antagonist Ki16425 similarly reduced fibrosis and significantly attenuated renal expression of the profibrotic cytokines connective tissue growth factor (CTGF) and transforming growth factor beta (TGFbeta). In vitro, LPA induced a rapid, dose-dependent increase in CTGF expression that was inhibited by Ki16425. In conclusion, LPA, likely acting through LPA1, is involved in obstruction-induced TIF. Therefore, the LPA1 receptor might be a pharmaceutical target to treat renal fibrosis.


Assuntos
Fibrose/metabolismo , Nefropatias/patologia , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Humanos , Isoxazóis/farmacologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeos/química , Propionatos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Ureter/embriologia
5.
Endocrinology ; 148(3): 1039-49, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17122076

RESUMO

The role of cholecystokinin (CCK) as a satiety factor has been extensively documented. Although most work implies that CCK1 receptor mediates the control of food intake, a contributing role for CCK2 receptor (CCK2R) in the CCK-induced satiety cannot be totally excluded. The hypothesis that CCK2R invalidation disrupts regulatory pathways with impact on feeding behavior was examined in CCK2R(-/-) mice. CCK2R(-/-) mice developed obesity that was associated with hyperphagia. Obesity was related with increased fat deposition resulting from adipocyte hypertrophy. Expression of several adipokines was dysregulated consistently with obesity. Moreover, obesity was associated with disturbed glucose homeostasis as revealed by increased fasting glycemia and insulinemia, impaired glucose tolerance, and hepatic insulin resistance in CCK2R(-/-) mice. In vitro analysis of isolated adipocytes metabolism was consistent with increased storage but preserved insulin sensitivity. Suppression of feeding and concomitant increased expression of hypothalamic proopiomelanocortin after intracerebroventricular injection of gastrin into control mice demonstrates that hypothalamic CCK2 receptors mediate inhibition of food intake. Comparative analysis of hypothalamic mediator gene expression in fed knockout and control mice demonstrated overexpression of ghrelin receptors in CCK2R(-/-) mice, indicating up-regulation of orexigenic pathways. This effect was also observed after body weight normalization, indicating a causative role in the development of hyperphagia and obesity of CCK2R(-/-) mice. Our results give evidence that CCK2 receptor activity plays a contributing regulatory role in the control of food intake.


Assuntos
Regulação do Apetite/genética , Hiperfagia/genética , Obesidade/genética , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/fisiologia , Adiposidade , Animais , Glicemia/análise , Glicemia/metabolismo , Peso Corporal , Metabolismo Energético , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Atividade Motora
6.
FEBS Lett ; 581(3): 394-400, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17234189

RESUMO

Non-conventional major histocompatibility complex class I molecules are involved in a variety of physiological functions, most at the periphery of the immune system per se. Zinc-alpha(2)-glycoprotein (ZAG), the sole soluble member of this superfamily has been implicated in cachexia, a poorly understood yet life-threatening, severe wasting syndrome. To further ascertain the role of ZAG in lipid metabolism and perhaps the immune system, we inactivated both ZAG alleles by gene targeting in mice. Subjecting these ZAG deficient animals to standard or lipid rich food regimens led to increased body weight in comparison to identically treated wild-type mice. This phenotype appeared to correlate with a significant decrease in adipocytic lipolysis that could not be rescued by several pharmacological agents including beta(3)-adrenoreceptor agonists. Furthermore, in contrast to previously reported data, ZAG was found to be ubiquitously and constitutively expressed, with an especially high level in the mouse liver. No overt immunological phenotype was identified in these animals.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Lipólise/fisiologia , Proteínas de Plasma Seminal/metabolismo , Adipócitos/metabolismo , Agonistas de Receptores Adrenérgicos beta 3 , Alelos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA/genética , Gorduras na Dieta/administração & dosagem , Expressão Gênica , Marcação de Genes , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Técnicas In Vitro , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Plasma Seminal/genética , Distribuição Tecidual , Transfecção , Aumento de Peso , Glicoproteína Zn-alfa-2
7.
FASEB J ; 20(9): 1528-30, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16723381

RESUMO

We have recently identified apelin as a novel adipokine up-regulated by insulin and obesity. Since obesity and insulin resistance are associated with chronically elevated levels of both insulin and TNFalpha, the present study was performed to investigate a putative regulation of apelin expression in adipocytes by TNFalpha. Herein, we report a tight correlation between apelin and TNFalpha expression in adipose tissue of lean and obese humans. Apelin regulation by TNFalpha was further studied in cultured explants of human adipose tissue. The endogenous expression of TNFalpha in adipocytes isolated from the explants was accompanied by a 6-9 h subsequent increase of apelin expression in adipocytes. This increase was reversed by inhibiting TNFalpha expression with 100 microM isobutylmethylxanthine. In different mouse models of obesity, expression of both TNFalpha and apelin was also significantly increased in adipocytes of obese mice. Furthermore, short-term exposure to an i.p. injection of TNFalpha in C57Bl6/J mice induced an increase of apelin expression in adipose tissue as well as apelin plasma levels. Finally, a direct positive effect of TNFalpha has been shown in differentiated 3T3F442A adipocytes on apelin expression and secretion. The signaling pathways of TNFalpha for the induction of apelin were dependent of PI3-kinase, c-Jun NH2-terminal kinase (JNK), and MAPK but not PKC activation. All together, these findings suggest that apelin might be a candidate to better understand potential links between obesity and associated disorders such as inflammation and insulin resistance.


Assuntos
Tecido Adiposo/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Abdome , Adipócitos/citologia , Adipócitos/fisiologia , Adipocinas , Tecido Adiposo/efeitos dos fármacos , Adulto , Animais , Apelina , Proteínas de Transporte , Diferenciação Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/fisiopatologia , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/fisiopatologia
8.
Endocrinology ; 146(4): 1764-71, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15677759

RESUMO

The results presented herein demonstrate that apelin is expressed and secreted by both human and mouse adipocytes. Apelin mRNA levels in isolated adipocytes are close to other cell types present in white adipose tissue or other organs known to express apelin such as kidney, heart, and to a lesser extent brown adipose tissue. Apelin expression is increased during adipocyte differentiation stage. A comparison of four different models of obesity in mice showed a large increase in both apelin expression in fat cells and apelin plasma levels in all the hyperinsulinemia-associated obesities and clearly demonstrated that obesity or high-fat feeding are not the main determinants of the rise of apelin expression. The lack of insulin in streptozotocin-treated mice is associated with a decreased expression of apelin in adipocytes. Furthermore, apelin expression in fat cells is strongly inhibited by fasting and recovered after refeeding, in a similar way to insulin. A direct regulation of apelin expression by insulin is observed in both human and mouse adipocytes and clearly associated with the stimulation of phosphatidylinositol 3-kinase, protein kinase C, and MAPK. These data provide evidence that insulin exerts a direct control on apelin gene expression in adipocytes. In obese patients, both plasma apelin and insulin levels were significantly higher, suggesting that the regulation of apelin by insulin could influence blood concentrations of apelin. The present work identifies apelin as a novel adipocyte endocrine secretion and focuses on its potential link with obesity-associated variations of insulin sensitivity status.


Assuntos
Proteínas de Transporte/genética , Insulina/farmacologia , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipocinas , Tecido Adiposo/metabolismo , Animais , Apelina , Proteínas de Transporte/fisiologia , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Hiperinsulinismo/metabolismo , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
9.
Artigo em Inglês | MEDLINE | ID: mdl-23831705

RESUMO

Lipid autacoids derived from n-3/n-6 polyunsaturated fatty acids (PUFA) are some of the earliest signals triggered by an inflammatory reaction. They are acting also as essential regulators of numerous biological processes in physiological conditions. With regards to their importance, a robust and rapid procedure to quantify a large variety of PUFA metabolites, applicable to diverse biological components needed to be formulated. We have developed a simple methodology using liquid chromatography-tandem mass spectrometry allowing quantification of low-level of PUFA metabolites including bioactive mediators, inactive products and pathway biomarkers. Solid phase extraction was used for samples preparation with an extraction yield of 80% ranging from 65% to 98%. The method was optimized to obtain a rapid (8.5min) and accurate separation of 26 molecules, with a very high sensitivity of detection and analysis (0.6-155pg). When applied to biological samples, the method enabled characterization of eicosanoids and docosanoids production in epithelial cells or foam macrophages stimulated with LPS, in biological fluids and tissues from mouse models of peritonitis or infectious colitis. Our results demonstrate that this new method can be used in cultured cells, in fluids and in colonic tissues to quantify pro-inflammatory and pro-resolving PUFA metabolites mediators.


Assuntos
Ácidos Graxos Insaturados/análise , Mediadores da Inflamação/análise , Espectrometria de Massas em Tandem/métodos , Animais , Células CACO-2 , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Colo/metabolismo , Colo/microbiologia , Eicosanoides/análise , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/economia , Fatores de Tempo
10.
J Physiol Biochem ; 68(4): 635-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22644624

RESUMO

Autotaxin (ATX) is a lysophospholipase D involved in synthesis of a bioactive mediator: lysophosphatidic. ATX is abundantly produced by adipocytes and exerts a negative action on adipose tissue expansion. In both mice and humans, ATX expression increases with obesity in association with insulin resistance. In the present study, fat depot-specific regulation of ATX was explored in human. ATX mRNA expression was quantified in visceral and subcutaneous adipose tissue in obese (BMI > 40 kg/m(2); n = 27) and non-obese patients (BMI < 25 kg/m(2); n = 10). Whatever the weight status of the patients is, ATX expression was always higher (1.3- to 6-fold) in subcutaneous than in visceral fat. Nevertheless, visceral fat ATX was significantly higher (42 %) in obese than in non-obese patients, whereas subcutaneous fat ATX remained unchanged. In obese patients, visceral fat ATX expression was positively correlated with diastolic arterial blood pressure (r = 0.67; P = 0.001). This correlation was not observed with subcutaneous fat ATX. Visceral fat ATX was mainly correlated with leptin (r = 0.60; P = 0.001), inducible nitric oxide synthase (r = 0.58; P = 0,007), and apelin receptor (r = 0.50; P = 0.007). These correlations were not observed with subcutaneous fat ATX. These results reveal that obesity-associated upregulation of human adipose tissue ATX is specific to the visceral fat depot.


Assuntos
Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Pressão Sanguínea , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Leptina/genética , Leptina/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos , Diester Fosfórico Hidrolases/genética , Regulação para Cima
12.
Cell Metab ; 8(5): 437-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19046574

RESUMO

Adipose tissue (AT) secretes several adipokines that influence insulin sensitivity and potentially link obesity to insulin resistance. Apelin, a peptide present in different tissues, is also secreted by adipocytes. Apelin is upregulated in obese and hyperinsulinemic humans and mice. Although a tight relation exists between the regulation of apelin and insulin, it remains largely unknown whether apelin affects whole-body glucose utilization. Herein, we show that in chow-fed mice, acute intravenous injection of apelin has a powerful glucose-lowering effect associated with enhanced glucose utilization in skeletal muscle and AT. Through in vivo and in vitro pharmacological and genetic approaches, we demonstrate the involvement of endothelial NO synthase, AMP-activated protein kinase, and Akt in apelin-stimulated glucose uptake in soleus muscle. Remarkably, in obese and insulin-resistant mice, apelin restored glucose tolerance and increased glucose utilization. Apelin could thus represent a promising target in the management of insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Transporte/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas , Animais , Apelina , Proteínas de Transporte/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo
13.
J Biol Chem ; 280(15): 14656-62, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15710620

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid acting via specific G protein-coupled receptors that is synthesized at the extracellular face of adipocytes by a secreted lysophospholipase D (autotaxin). Preadipocytes mainly express the LPA(1) receptor subtype, and LPA increases their proliferation. In monocytes and CV1 cells LPA was recently reported to bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor also known to play a pivotal role in adipogenesis. Here we show that, unlike the PPARgamma agonist rosiglitazone, LPA was unable to increase transcription of PPARgamma-sensitive genes (PEPCK and ALBP) in the mouse preadipose cell line 3T3F442A. In contrast, treatment with LPA decreased PPARgamma2 expression, impaired the response of PPARgamma-sensitive genes to rosiglitazone, reduced triglyceride accumulation, and reduced the expression of adipocyte mRNA markers. The anti-adipogenic activity of LPA was also observed in the human SGBS (Simpson-Golabi-Behmel syndrome) preadipocyte cell line, as well as in primary preadipocytes isolated from wild type mice. Conversely, the anti-adipogenic activity of LPA was not observed in primary preadipocytes from LPA(1) receptor knock-out mice, which, in parallel, exhibited a higher adiposity than wild type mice. In conclusion, LPA does not behave as a potent PPARgamma agonist in adipocytes but, conversely, inhibits PPARgamma expression and adipogenesis via LPA(1) receptor activation. The local production of LPA may exert a tonic inhibitory effect on the development of adipose tissue.


Assuntos
Adipócitos/citologia , Regulação para Baixo , Lisofosfolipídeos/farmacologia , PPAR gama/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Meios de Cultura Livres de Soro/farmacologia , Proteínas de Ligação a Ácido Graxo , Glucose-6-Fosfato Isomerase/metabolismo , Glicoproteínas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Monócitos/citologia , Complexos Multienzimáticos/metabolismo , Oligonucleotídeos/genética , Fosfodiesterase I , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Diester Fosfórico Hidrolases , Pirofosfatases , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA