Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Eur J Immunol ; : e2350958, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046890

RESUMO

In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.

2.
BMC Immunol ; 25(1): 13, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331731

RESUMO

The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Humanos , Mutação , Receptores de Antígenos de Linfócitos B/genética , Sequenciamento de Nucleotídeos em Larga Escala
3.
Eur J Immunol ; 53(11): e2350562, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597325

RESUMO

Levamisole (LMS) is a small molecule used in the treatment of idiopathic nephrotic syndrome (INS). The pathogenesis of INS remains unknown, but evidence points toward an immunological basis of the disease. Recently, LMS has been shown to increase the relapse-free survival in INS patients. While LMS has been hypothesized to exert an immunomodulatory effect, its mechanism of action remains unknown. Here, we show that LMS decreased activation and proliferation of human T cells. T-cell activation-associated cytokines such as IL-2, TNF-α, and IFN-γ were reduced upon LMS treatment, whereas IL-4 and IL-13 were increased. Gene expression profiling confirmed that the suppressive effects of LMS as genes involved in cell cycle progression were downregulated. Furthermore, genes associated with p53 activation were upregulated by LMS. In agreement, LMS treatment resulted in p53 phosphorylation and increased expression of the p53 target gene FAS. Accordingly, LMS sensitized activated T cells for Fas-mediated apoptosis. LMS treatment resulted in a mid-S phase cell cycle arrest accompanied by γH2AX-foci formation and phosphorylation of CHK1. Our findings indicate that LMS acts as an immunosuppressive drug that directly affects the activation and proliferation of human T cells by induction of DNA damage and the activation of a p53-dependent DNA damage response.


Assuntos
Levamisol , Proteína Supressora de Tumor p53 , Humanos , Levamisol/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Divisão Celular , Apoptose , Linfócitos T , Dano ao DNA
4.
Haematologica ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934080

RESUMO

Chromosomal translocations in non-Hodgkin lymphoma (NHL) result in activation of oncogenes by placing them under the regulation of immunoglobulin heavy chain (IGH) super-enhancers. Aberrant expression of translocated oncogenes induced by enhancer activity can contribute to lymphomagenesis. The role of the IGH enhancers in normal B-cell development is well established, but knowledge regarding the precise mechanisms of their involvement in control of the translocated oncogenes is limited. The goal of this project was to define the critical regions in the IGH regulatory elements and identify enhancer RNAs (eRNA). We designed a sgRNA library densely covering the IGH enhancers and performed tiling CRISPR interference screens in three NHL cell lines. This revealed three regions crucial for NHL cell growth. With chromatin-enriched RNA-Seq we showed transcription from the core enhancer regions and subsequently validated expression of the eRNAs in a panel of NHL cell lines and tissue samples. Inhibition of the essential IGH enhancer regions decreased expression of eRNAs and translocated oncogenes in several NHL cell lines. The observed expression and growth patterns were consistent with the breakpoints in the IGH locus. Moreover, targeting the Eµ enhancer resulted in loss of B-cell receptor expression. In a Burkitt lymphoma cell line, MYC overexpression partially rescued the phenotype induced by IGH enhancer inhibition. Our results indicated the most critical regions in the IGH enhancers and provided new insights into the current understanding of the role of IGH enhancers in B-cell NHL. As such, this study forms a basis for development of potential therapeutic approaches.

5.
Haematologica ; 108(3): 797-810, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226498

RESUMO

BCL-2 family proteins are frequently aberrantly expressed in mantle cell lymphoma (MCL). Recently, the BCL-2-specific inhibitor venetoclax has been approved by the US Food and Drug Administration for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). In MCL, venetoclax has shown promising efficacy in early clinical trials; however, a significant subset of patients is resistant. By conducting a kinome-centered CRISPR-Cas9 knockout sensitizer screen, we identified casein kinase 2 (CK2) as a major regulator of venetoclax resistance in MCL. Interestingly, CK2 is over-expressed in MCL and high CK2 expression is associated with poor patient survival. Targeting of CK2, either by inducible short hairpin RNA (shRNA)-mediated knockdown of CK2 or by the CK2-inhibitor silmitasertib, did not affect cell viability by itself, but strongly synergized with venetoclax in both MCL cell lines and primary samples, also if combined with ibrutinib. Furthermore, targeting of CK2 reduced MCL-1 levels, which involved impaired MCL-1 translation by inhibition of eIF4F complex assembly, without affecting BCL-2 and BCL-XL expression. Combined, this results in enhanced BCL-2 dependence and, consequently, venetoclax sensitization. In cocultures, targeting of CK2 overcame stroma-mediated venetoclax resistance of MCL cells. Taken together, our findings indicate that targeting of CK2 sensitizes MCL cells to venetoclax through downregulation of MCL-1. These novel insights provide a strong rationale for combining venetoclax with CK2 inhibition as therapeutic strategy for MCL patients.


Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Humanos , Adulto , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
6.
Proc Natl Acad Sci U S A ; 114(2): 376-381, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028233

RESUMO

The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also affected by, or even addicted to, signals from the microenvironment. As therapeutic targets, these extrinsic signals may be equally significant as mutated oncogenes. In multiple myeloma (MM), a plasma cell malignancy, most tumors display hallmarks of active Wnt signaling but lack activating Wnt-pathway mutations, suggesting activation by autocrine Wnt ligands and/or paracrine Wnts emanating from the bone marrow (BM) niche. Here, we report a pivotal role for the R-spondin/leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis in driving aberrant Wnt/ß-catenin signaling in MM. We show that LGR4 is expressed by MM plasma cells, but not by normal plasma cells or B cells. This aberrant LGR4 expression is driven by IL-6/STAT3 signaling and allows MM cells to hijack R-spondins produced by (pre)osteoblasts in the BM niche, resulting in Wnt (co)receptor stabilization and a dramatically increased sensitivity to auto- and paracrine Wnts. Our study identifies aberrant R-spondin/LGR4 signaling with consequent deregulation of Wnt (co)receptor turnover as a driver of oncogenic Wnt/ß-catenin signaling in MM cells. These results advocate targeting of the LGR4/R-spondin interaction as a therapeutic strategy in MM.


Assuntos
Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Interleucina-6/metabolismo , Ligantes , Camundongos , Ligação Proteica/fisiologia , Fator de Transcrição STAT3/metabolismo , beta Catenina/metabolismo
7.
Mol Cell ; 41(2): 232-42, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255732

RESUMO

After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading to antibody class switch recombination (CSR). We asked if, during B cell activation, AID also induces DNA breaks at genes other than IgH genes. Using a nonbiased genome-wide approach, we have identified hundreds of reproducible, AID-dependent DSBs in mouse splenic B cells shortly after induction of CSR in culture. Most interestingly, AID induces DSBs at sites syntenic with sites of translocations, deletions, and amplifications found in human B cell lymphomas, including within the oncogene B cell lymphoma11a (bcl11a)/evi9. Unlike AID-induced DSBs in Ig genes, genome-wide AID-dependent DSBs are not restricted to transcribed regions and frequently occur within repeated sequence elements, including CA repeats, non-CA tandem repeats, and SINEs.


Assuntos
Linfócitos B/enzimologia , Citidina Desaminase/fisiologia , Quebras de DNA de Cadeia Dupla , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA , Genes myc , Switching de Imunoglobulina , Ativação Linfocitária , Camundongos , Proteínas Nucleares/química , Sequências Repetitivas de Ácido Nucleico , Proteínas Repressoras
8.
J Immunol ; 197(7): 2918-29, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559048

RESUMO

The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/metabolismo , Transdução de Sinais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Nucleares/metabolismo
9.
Am J Pathol ; 186(12): 3273-3284, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27750045

RESUMO

Follicular lymphoma (FL) is an indolent B-cell non-Hodgkin lymphoma able to transform into germinal center-type diffuse large B-cell lymphoma. We describe four extraordinary cases of FL, which progressed to TdT+CD20- precursor B-lymphoblastic lymphoma (B-LBL). Fluorescence in situ hybridization analysis showed that all four B-LBLs had acquired a MYC translocation on transformation. Comparative genomic hybridization analysis of one case demonstrated that in addition to 26 numerical aberrations that were shared between the FL and B-LBL, deletion of CDKN2A/B and 17q11, 14q32 amplification, and copy-neutral loss of heterozygosity of 9p were gained in the B-LBL cells. Whole-exome sequencing revealed mutations in FMN2, NEB, and SYNE1 and a nonsense mutation in KMT2D, all shared by the FL and B-LBL, and TNFRSF14, SMARCA2, CCND3 mutations uniquely present in the B-LBL. Remarkably, all four FL-B-LBL pairs expressed IgG. In two B-LBLs, evidence was obtained for ongoing rearrangement of IG light chain variable genes and expression of the surrogate light chain. IGHV mutation analysis showed that all FL-B-LBL pairs harbored identical or near-identical somatic mutations. From the somatic gene alterations found in the IG and non-IG genes, we conclude that the FLs and B-LBLs did not develop in parallel from early t(14;18)-positive IG-unmutated precursors, but that the B-LBLs developed from preexistent FL subclones that accumulated additional genetic damage.


Assuntos
Cadeias Leves Substitutas da Imunoglobulina/genética , Cadeias gama de Imunoglobulina/genética , Linfoma de Células B/genética , Linfoma Folicular/genética , Linfócitos B/patologia , Hibridização Genômica Comparativa , Ciclina D3/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Análise Mutacional de DNA , Feminino , Centro Germinativo/patologia , Humanos , Cadeias Leves Substitutas da Imunoglobulina/metabolismo , Cadeias gama de Imunoglobulina/metabolismo , Hibridização in Situ Fluorescente , Linfoma de Células B/patologia , Linfoma Folicular/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Neurofibromina 1/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Fatores de Transcrição/genética , Translocação Genética , Adulto Jovem
10.
Blood ; 126(11): 1324-35, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26153519

RESUMO

In developing lymphocytes, expression and activity of the recombination activation gene protein 1 (RAG1) and RAG2 endonuclease complex is tightly regulated to ensure ordered recombination of the immunoglobulin genes and to avoid genomic instability. Aberrant RAG activity has been implicated in the generation of secondary genetic events in human B-cell acute lymphoblastic leukemias (B-ALLs), illustrating the oncogenic potential of the RAG complex. Several layers of regulation prevent collateral genomic DNA damage by restricting RAG activity to the G1 phase of the cell cycle. In this study, we show a novel pathway that suppresses RAG expression in cycling-transformed mouse pre-B cells and human pre-B B-ALL cells that involves the negative regulation of FOXO1 by nuclear factor κB (NF-κB). Inhibition of NF-κB in cycling pre-B cells resulted in upregulation of RAG expression and recombination activity, which provoked RAG-dependent DNA damage. In agreement, we observe a negative correlation between NF-κB activity and the expression of RAG1, RAG2, and TdT in B-ALL patients. Our data suggest that targeting NF-κB in B-ALL increases the risk of RAG-dependent genomic instability.


Assuntos
Dano ao DNA , NF-kappa B/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sequência de Bases , Linhagem Celular , DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Genes RAG-1 , Genes abl , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cadeias kappa de Imunoglobulina/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Transdução de Sinais , Transformação Genética
11.
Int J Mol Sci ; 18(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867784

RESUMO

Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.


Assuntos
Reparo do DNA/genética , Imunidade Humoral/genética , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genética , Linfócitos B/imunologia , Citidina Desaminase/genética , Dano ao DNA/genética , Dano ao DNA/imunologia , Reparo do DNA/imunologia , Rearranjo Gênico/genética , Rearranjo Gênico/imunologia , Humanos , Mutagênese/genética , Mutagênese/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Linfócitos T/imunologia , Recombinação V(D)J/imunologia
12.
J Immunol ; 192(10): 4887-96, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729610

RESUMO

Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C region genes. DSBs are necessary for CSR, but improper regulation of DSBs can lead to chromosomal translocations that can result in B cell lymphoma. The protein kinase ataxia telangiectasia mutated (ATM) is an important proximal regulator of the DNA damage response (DDR), and translocations involving S regions are increased in its absence. ATM phosphorylates H2AX, which recruits other DNA damage response (DDR) proteins, including mediator of DNA damage checkpoint 1 (Mdc1) and p53 binding protein 1 (53BP1), to sites of DNA damage. As these DDR proteins all function to promote repair and recombination of DSBs during CSR, we examined whether mouse splenic B cells deficient in these proteins would show alterations in S region DSBs when undergoing CSR. We find that in atm(-/-) cells Sµ DSBs are increased, whereas DSBs in downstream Sγ regions are decreased. We also find that mutations in the unrearranged Sγ3 segment are reduced in atm(-/-) cells. Our data suggest that ATM increases AID targeting and activity at downstream acceptor S regions during CSR and that in atm(-/-) cells Sµ DSBs accumulate as they lack a recombination partner.


Assuntos
Citidina Desaminase/imunologia , Rearranjo Gênico do Linfócito B/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Citidina Desaminase/genética , Dano ao DNA/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Rearranjo Gênico do Linfócito B/genética , Histonas/genética , Histonas/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
J Immunol ; 193(2): 931-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24935922

RESUMO

Activation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage. We show that the base excision repair protein apurinic/apyrimidinic endonuclease (APE) 2 protects activated B cells from oxidative damage in vitro. APE2-deficient mice have smaller GCs and reduced Ab responses compared with wild-type mice. DNA double-strand breaks are increased in the rapidly dividing GC centroblasts of APE2-deficient mice, which activate a p53-independent cell cycle checkpoint and a p53-dependent apoptotic response. Proliferative and/or oxidative damage and AID-dependent damage are additive stresses that correlate inversely with GC size in wild-type, AID-, and APE2-deficient mice. Excessive double-strand breaks lead to decreased expression of BCL6, which would enable DNA repair pathways but limit GC cell numbers. These results describe a nonredundant role for APE2 in the protection of GC cells from AID-independent damage, and although GC cells uniquely tolerate DNA damage, we find that the DNA damage response can still regulate GC size through pathways that involve p53 and BCL6.


Assuntos
Linfócitos B/imunologia , Citidina Desaminase/imunologia , Dano ao DNA , Endonucleases/imunologia , Centro Germinativo/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linfócitos B/metabolismo , Ciclo Celular/genética , Ciclo Celular/imunologia , Proliferação de Células , Células Cultivadas , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Endonucleases/deficiência , Endonucleases/genética , Citometria de Fluxo , Centro Germinativo/metabolismo , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Enzimas Multifuncionais , Estresse Oxidativo/imunologia , Proteínas Proto-Oncogênicas c-bcl-6 , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
14.
Blood ; 122(24): 3960-3, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24100449

RESUMO

Although in vitro studies pointed to the tumor necrosis factor family member APRIL (a proliferation-inducing ligand) in mediating survival of chronic lymphocytic leukemia (CLL) cells, clear evidence for a role in leukemogenesis and progression in CLL is lacking. APRIL significantly prolonged in vitro survival of CD5(+)B220(dull) leukemic cells derived from the murine Eµ-TCL1-Tg (TCL1-Tg [transgenic]) model for CLL. APRIL-TCL1 double-Tg mice showed a significantly earlier onset of leukemia and disruption of splenic architecture, and survival was significantly reduced. Interestingly, clonal evolution of CD5(+)B220(dull) cells (judged by BCR clonality) did not seem to be accelerated by APRIL; both mouse strains were oligoclonal at 4 months. Although APRIL binds different receptors, APRIL-mediated leukemic cell survival depended on tumor necrosis factor receptor superfamily member 13B (TACI) ligation. These findings indicate that APRIL has an important role in CLL and that the APRIL-TACI interaction might be a selective novel therapeutic target for human CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Fatores de Tempo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Células Tumorais Cultivadas , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
15.
J Immunol ; 186(4): 1943-50, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21228350

RESUMO

B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.


Assuntos
Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/imunologia , Endonucleases/fisiologia , Fluoruracila/administração & dosagem , Células-Tronco Hematopoéticas/enzimologia , Subpopulações de Linfócitos/enzimologia , Linfopoese/imunologia , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dano ao DNA/imunologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Endonucleases/deficiência , Endonucleases/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Depleção Linfocítica , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Linfopoese/efeitos dos fármacos , Linfopoese/genética , Camundongos , Camundongos Knockout , Enzimas Multifuncionais , Mielopoese/efeitos dos fármacos , Mielopoese/genética , Mielopoese/imunologia , Proteína Supressora de Tumor p53/fisiologia
16.
Nucleic Acids Res ; 39(8): 3156-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21172930

RESUMO

DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex(+/-) mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Alquilantes/farmacologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo
17.
Front Immunol ; 14: 1123968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138881

RESUMO

The adaptive immune system has the extraordinary ability to produce a broad range of immunoglobulins that can bind a wide variety of antigens. During adaptive immune responses, activated B cells duplicate and undergo somatic hypermutation in their B-cell receptor (BCR) genes, resulting in clonal families of diversified B cells that can be related back to a common ancestor. Advances in high-throughput sequencing technologies have enabled the high-throughput characterization of B-cell repertoires, however, the accurate identification of clonally related BCR sequences remains a major challenge. In this study, we compare three different clone identification methods on both simulated and experimental data, and investigate their impact on the characterization of B-cell diversity. We observe that different methods lead to different clonal definitions, which affects the quantification of clonal diversity in repertoire data. Our analyses show that direct comparisons between clonal clusterings and clonal diversity of different repertoires should be avoided if different clone identification methods were used to define the clones. Despite this variability, the diversity indices inferred from the repertoires' clonal characterization across samples show similar patterns of variation regardless of the clonal identification method used. We find the Shannon entropy to be the most robust in terms of the variability of diversity rank across samples. Our analysis also suggests that the traditional germline gene alignment-based method for clonal identification remains the most accurate when the complete information about the sequence is known, but that alignment-free methods may be preferred for shorter sequencing read lengths. We make our implementation freely available as a Python library cdiversity.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Células Clonais , Imunoglobulinas/genética , Biblioteca Gênica
18.
Blood Adv ; 7(9): 1697-1712, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36322819

RESUMO

Metabolic alterations are important cancer-associated features that allow cancer cell transformation and survival under stress conditions. Multiple myeloma (MM) plasma cells show increased glycolysis and oxidative phosphorylation (OXPHOS), which are characteristics associated with recurrent genetic aberrations that drive the proliferation and survival of MM cells. The protein kinase B/AKT acts as a central node in cellular metabolism and is constitutively active in MM cells. Despite the known role of AKT in modulating cellular metabolism, little is known about the downstream factors of AKT that control the metabolic adaptability of MM cells. Here, we demonstrate that negative regulation of the forkhead box O (FOXO) transcription factors (TFs) by AKT is crucial to prevent the metabolic shutdown in MM cells, thus contributing to their metabolic adaptability. Our results demonstrate that the expression of several key metabolic genes involved in glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS are repressed by FOXO TFs. Moreover, the FOXO-dependent repression of glycolysis- and TCA-associated genes correlates with a favorable prognosis in a large cohort of patients with MM. Our data suggest that repression of FOXO by AKT is essential to sustain glycolysis and the TCA cycle activity in MM cells and, as such, predicts patient survival.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mieloma Múltiplo/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fosforilação Oxidativa
19.
NPJ Syst Biol Appl ; 9(1): 8, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927990

RESUMO

Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.


Assuntos
Linfócitos B , Centro Germinativo , Receptores de Antígenos de Linfócitos B/genética
20.
Mol Oncol ; 17(2): 284-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400430

RESUMO

Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM.


Assuntos
Mieloma Múltiplo , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Humanos , Camundongos , Linhagem Celular , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA