Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS Pathog ; 19(7): e1011437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37450466

RESUMO

The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Humanos , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Tuberculose/microbiologia , Mamíferos
2.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619220

RESUMO

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antioxidantes , Oxirredução , Estresse Oxidativo
3.
Antimicrob Agents Chemother ; : e0145623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651855

RESUMO

Mycobacterium abscessus is an emerging opportunistic pathogen responsible for chronic lung diseases, especially in patients with cystic fibrosis. Treatment failure of M. abscessus infections is primarily associated with intrinsic or acquired antibiotic resistance. However, there is growing evidence that antibiotic tolerance, i.e., the ability of bacteria to transiently survive exposure to bactericidal antibiotics through physiological adaptations, contributes to the relapse of chronic infections and the emergence of acquired drug resistance. Yet, our understanding of the molecular mechanisms that underlie antibiotic tolerance in M. abscessus remains limited. In the present work, a mutant with increased cross-tolerance to the first- and second-line antibiotics cefoxitin and moxifloxacin, respectively, has been isolated by experimental evolution. This mutant harbors a mutation in serB2, a gene involved in L-serine biosynthesis. Metabolic changes caused by this mutation alter the intracellular redox balance to a more reduced state that induces overexpression of the transcriptional regulator WhiB7 during the stationary phase, promoting tolerance through activation of a WhiB7-dependant adaptive stress response. These findings suggest that alteration of amino acid metabolism and, more generally, conditions that trigger whiB7 overexpression, makes M. abscessus more tolerant to antibiotic treatment.

4.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605588

RESUMO

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/microbiologia , Micobactérias não Tuberculosas , Organoides , Tuberculose/microbiologia
5.
PLoS Pathog ; 17(11): e1010020, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724002

RESUMO

Mycobacterium tuberculosis, the main causative agent of human tuberculosis, is transmitted from person to person via small droplets containing very few bacteria. Optimizing the chance to seed in the lungs is therefore a major adaptation to favor survival and dissemination in the human population. Here we used TnSeq to identify genes important for the early events leading to bacterial seeding in the lungs. Beside several genes encoding known virulence factors, we found three new candidates not previously described: rv0180c, rv1779c and rv1592c. We focused on the gene, rv0180c, of unknown function. First, we found that deletion of rv0180c in M. tuberculosis substantially reduced the initiation of infection in the lungs of mice. Next, we established that Rv0180c enhances entry into macrophages through the use of complement-receptor 3 (CR3), a major phagocytic receptor for M. tuberculosis. Silencing CR3 or blocking the CR3 lectin site abolished the difference in entry between the wild-type parental strain and the Δrv0180c::km mutant. However, we detected no difference in the production of both CR3-known carbohydrate ligands (glucan, arabinomannan, mannan), CR3-modulating lipids (phthiocerol dimycocerosate), or proteins in the capsule of the Δrv0180c::km mutant in comparison to the wild-type or complemented strains. By contrast, we established that Rv0180c contributes to the functionality of the bacterial cell envelope regarding resistance to toxic molecule attack and cell shape. This alteration of bacterial shape could impair the engagement of membrane receptors that M. tuberculosis uses to invade host cells, and open a new perspective on the modulation of bacterial infectivity.


Assuntos
Proteínas de Bactérias/metabolismo , Forma Celular , Parede Celular/química , Macrófagos/microbiologia , Metaloproteinases da Matriz/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/metabolismo , Tuberculose/metabolismo , Tuberculose/patologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
BMC Biol ; 20(1): 147, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729566

RESUMO

BACKGROUND: Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS: We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS: The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.


Assuntos
Mycobacterium tuberculosis , Policetídeos , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(51): 25649-25658, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31757855

RESUMO

Phthiocerol dimycocerosate (DIM) is a major virulence factor of the pathogen Mycobacterium tuberculosis (Mtb). While this lipid promotes the entry of Mtb into macrophages, which occurs via phagocytosis, its molecular mechanism of action is unknown. Here, we combined biophysical, cell biology, and modeling approaches to reveal the molecular mechanism of DIM action on macrophage membranes leading to the first step of Mtb infection. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry showed that DIM molecules are transferred from the Mtb envelope to macrophage membranes during infection. Multiscale molecular modeling and 31P-NMR experiments revealed that DIM adopts a conical shape in membranes and aggregates in the stalks formed between 2 opposing lipid bilayers. Infection of macrophages pretreated with lipids of various shapes uncovered a general role for conical lipids in promoting phagocytosis. Taken together, these results reveal how the molecular shape of a mycobacterial lipid can modulate the biological response of macrophages.


Assuntos
Lipídeos/química , Macrófagos/microbiologia , Mycobacterium tuberculosis , Tuberculose/microbiologia , Linhagem Celular , Membrana Celular/química , Membrana Celular/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/fisiologia , Ressonância Magnética Nuclear Biomolecular
8.
J Biol Chem ; 295(32): 11184-11194, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554804

RESUMO

Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by Mycobacterium tuberculosis TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane. PE is predicted to be an anchored membrane protein, but its topological organization is unknown, raising questions about the subcellular localization of the final stage of TPP biosynthesis and the chemical nature of the substrates that are translocated by the MmpL transporter. Here, using genetic, biochemical, and proteomic approaches, we established that PE of Mycobacterium smegmatis is exported to the cell envelope following cleavage of its signal peptide and that this process is required for TPP biosynthesis, indicating that the last step of TPP formation occurs in the outer layers of the mycobacterial cell envelope. These results provide detailed insights into the molecular mechanisms controlling TPP formation and transport to the cell surface, enabling us to propose an updated model of the TPP biosynthetic pathway. Because the molecular mechanisms of glycolipid production are conserved among mycobacteria, these findings obtained with PE from M. smegmatis may offer clues to glycolipid formation in M. tuberculosis.


Assuntos
Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Membrana Celular/metabolismo , Glicolipídeos/metabolismo , Proteólise , Frações Subcelulares/metabolismo
9.
PLoS Pathog ; 14(7): e1007151, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979790

RESUMO

Mycobacterium leprae, an obligate intracellular bacillus, infects Schwann cells (SCs), leading to peripheral nerve damage, the most severe leprosy symptom. In the present study, we revisited the involvement of phenolic glycolipid I (PGL I), an abundant, private, surface M. leprae molecule, in M. leprae-SC interaction by using a recombinant strain of M. bovis BCG engineered to express this glycolipid. We demonstrate that PGL I is essential for bacterial adhesion and SC internalization. We also show that live mycobacterium-producing PGL I induces the expression of the endocytic mannose receptor (MR/CD206) in infected cells in a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent manner. Of note, blocking mannose recognition decreased bacterial entry and survival, pointing to a role for this alternative recognition pathway in bacterial pathogenesis in the nerve. Moreover, an active crosstalk between CD206 and the nuclear receptor PPARγ was detected that led to the induction of lipid droplets (LDs) formation and prostaglandin E2 (PGE2), previously described as fundamental players in bacterial pathogenesis. Finally, this pathway was shown to induce IL-8 secretion. Altogether, our study provides evidence that the entry of live M. leprae through PGL I recognition modulates the SC phenotype, favoring intracellular bacterial persistence with the concomitant secretion of inflammatory mediators that may ultimately be involved in neuroinflammation.


Assuntos
Antígenos de Bactérias/metabolismo , Glicolipídeos/metabolismo , Lectinas Tipo C/metabolismo , Hanseníase/metabolismo , Lectinas de Ligação a Manose/metabolismo , PPAR gama/metabolismo , Receptores de Superfície Celular/metabolismo , Células de Schwann/virologia , Humanos , Receptor de Manose , Mycobacterium leprae/metabolismo , Receptor Cross-Talk/fisiologia
10.
Cell Microbiol ; 19(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28095608

RESUMO

Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT-6). This small protein, which is secreted by the type VII secretion system ESX-1 (T7SS/ESX-1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock-out or knock-in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX-1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.


Assuntos
Antígenos de Bactérias/metabolismo , Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/patologia , Humanos , Macrófagos/microbiologia , Fagossomos/microbiologia , Células THP-1 , Fatores de Virulência
11.
Proc Natl Acad Sci U S A ; 111(31): 11491-6, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049399

RESUMO

Although the bovine tuberculosis (TB) agent, Mycobacterium bovis, may infect humans and cause disease, long-term epidemiological data indicate that humans represent a spill-over host in which infection with M. bovis is not self-maintaining. Indeed, human-to-human transmission of M. bovis strains and other members of the animal lineage of the tubercle bacilli is very rare. Here, we report on three mutations affecting the two-component virulence regulation system PhoP/PhoR (PhoPR) in M. bovis and in the closely linked Mycobacterium africanum lineage 6 (L6) that likely account for this discrepancy. Genetic transfer of these mutations into the human TB agent, Mycobacterium tuberculosis, resulted in down-regulation of the PhoP regulon, with loss of biologically active lipids, reduced secretion of the 6-kDa early antigenic target (ESAT-6), and lower virulence. Remarkably, the deleterious effects of the phoPR mutations were partly compensated by a deletion, specific to the animal-adapted and M. africanum L6 lineages, that restores ESAT-6 secretion by a PhoPR-independent mechanism. Similarly, we also observed that insertion of an IS6110 element upstream of the phoPR locus may completely revert the phoPR-bovis-associated fitness loss, which is the case for an exceptional M. bovis human outbreak strain from Spain. Our findings ultimately explain the long-term epidemiological data, suggesting that M. bovis and related phoPR-mutated strains pose a lower risk for progression to overt human TB, with major impact on the evolutionary history of TB.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Mutação/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Alelos , Animais , Antígenos de Bactérias , Proteínas de Bactérias/metabolismo , Bovinos , Sequência Conservada/genética , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos , Mutagênese Insercional , Mycobacterium/genética , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Tuberculose/genética , Virulência/genética
12.
PLoS Pathog ; 10(5): e1004183, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24874799

RESUMO

The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins. Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA (ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been established, therefore represents a missing link between the PhoPR two-component system and the downstream functions necessary for successful infection of the host.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/biossíntese , Mycobacterium tuberculosis/metabolismo , RNA não Traduzido/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Produtos do Gene tat/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Óperon/genética , Proteômica/métodos , RNA não Traduzido/genética , Virulência , beta-Lactamases/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(16): 6560-5, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23550160

RESUMO

A posttranslational protein O-mannosylation process resembling that found in fungi and animals has been reported in the major human pathogen Mycobacterium tuberculosis (Mtb) and related actinobacteria. However, the role and incidence of this process, which is essential in eukaryotes, have never been explored in Mtb. We thus analyzed the impact of interrupting O-mannosylation in the nonpathogenic saprophyte Mycobacterium smegmatis and in the human pathogen Mtb by inactivating the respective putative protein mannosyl transferase genes Msmeg_5447 and Rv1002c. Loss of protein O-mannosylation in both mutant strains was unambiguously demonstrated by efficient mass spectrometry-based glycoproteomics analysis. Unexpectedly, although the M. smegmatis phenotype was unaffected by the lack of manno-proteins, the Mtb mutant had severely impacted growth in vitro and in cellulo associated with a strong attenuation of its pathogenicity in immunocompromised mice. These data are unique in providing evidence of the biological significance of protein O-mannosylation in mycobacteria and demonstrate the crucial contribution of this protein posttranslational modification to Mtb virulence in the host.


Assuntos
Manose/metabolismo , Manosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Inativação Gênica , Manosiltransferases/genética , Espectrometria de Massas , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteômica/métodos , Especificidade da Espécie , Virulência
14.
Cell Microbiol ; 16(2): 195-213, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24028583

RESUMO

Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose-derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM-less mutant. Importantly, the loss of DAT/PAT and SL in a DIM-less background also affected Mtb growth in human monocyte-derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Policetídeo Sintases/metabolismo , Tuberculose/microbiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Deleção de Genes , Humanos , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Policetídeo Sintases/genética , Baço/microbiologia , Virulência
15.
PLoS Pathog ; 8(12): e1003097, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23308068

RESUMO

The cell envelope of Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, contains lipids with unusual structures. These lipids play a key role in both virulence and resistance to the various hostile environments encountered by the bacteria during infection. They are synthesized by complex enzymatic systems, including type-I polyketide synthases and type-I and -II fatty acid synthases, which require a post-translational modification to become active. This modification consists of the covalent attachment of the 4'-phosphopantetheine moiety of Coenzyme A catalyzed by phosphopantetheinyl transferases (PPTases). PptT, one of the two PPTases produced by mycobacteria, is involved in post-translational modification of various type-I polyketide synthases required for the formation of both mycolic acids and lipid virulence factors in mycobacteria. Here we identify PptT as a new target for anti-tuberculosis drugs; we address all the critical issues of target validation to demonstrate that PptT can be used to search for new drugs. We confirm that PptT is essential for the growth of M. bovis BCG in vitro and show that it is required for persistence of M. bovis BCG in both infected macrophages and immunodeficient mice. We generated a conditional expression mutant of M. tuberculosis, in which the expression of the pptT gene is tightly regulated by tetracycline derivatives. We used this construct to demonstrate that PptT is required for the replication and survival of the tubercle bacillus during the acute and chronic phases of infection in mice. Finally, we developed a robust and miniaturized assay based on scintillation proximity assay technology to search for inhibitors of PPTases, and especially of PptT, by high-throughput screening. Our various findings indicate that PptT meets the key criteria for being a therapeutic target for the treatment of mycobacterial infections.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/crescimento & desenvolvimento , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Processamento de Proteína Pós-Traducional , Bibliotecas de Moléculas Pequenas , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/enzimologia
16.
J Struct Biol ; 183(3): 320-328, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23916562

RESUMO

The need for early-on diagnostic tools to assess the folding and solubility of expressed protein constructs in vivo is of great interest when dealing with recalcitrant proteins. In this paper, we took advantage of the picomolar sensitivity of the bipartite GFP1-10/GFP11 system to investigate the solubility of the Mycobacterium tuberculosis 4'-phosphopantetheinyl transferase PptT, an enzyme essential for the viability of the tubercle bacillus. In vivo and in vitro complementation assays clearly showed the improved solubility of the full-length PptT compared to its N- and C-terminally truncated counterparts. However, initial attempts to purify the full-length enzyme overexpressed in Escherichia coli cells were hampered by aggregation issues overtime that caused the protein to precipitate within hours. The fact that the naturally occurring Coenzyme A and Mg(2+), essentials for PptT to carry out its function, could play a role in stabilizing the enzyme was confirmed using DSF experiments. In vitro activity assays were performed using the ACP substrate from the type I polyketide synthase PpsC from M. tuberculosis, a 2188 amino-acid enzyme that plays a major role in the virulence and pathogenicity of this microbial pathogen. We selected the most soluble and compact ACP fragment (2042-2188), identified by genetic selection of in-frame fragments from random library experiments, to monitor the transfer of the P-pant moiety from Coenzyme A onto a conserved serine residue of this ACP domain.


Assuntos
Proteínas de Bactérias/biossíntese , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/biossíntese , Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Coenzima A/química , Estabilidade Enzimática , Escherichia coli , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Magnésio/química , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/isolamento & purificação
17.
J Biol Chem ; 287(40): 33675-90, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22825853

RESUMO

Pks13 is a type I polyketide synthase involved in the final biosynthesis step of mycolic acids, virulence factors, and essential components of the Mycobacterium tuberculosis envelope. Here, we report the biochemical and structural characterization of a 52-kDa fragment containing the acyltransferase domain of Pks13. This fragment retains the ability to load atypical extender units, unusually long chain acyl-CoA with a predilection for carboxylated substrates. High resolution crystal structures were determined for the apo, palmitoylated, and carboxypalmitoylated forms. Structural conservation with type I polyketide synthases and related fatty-acid synthases also extends to the interdomain connections. Subtle changes could be identified both in the active site and in the upstream and downstream linkers in line with the organization displayed by this singular polyketide synthase. More importantly, the crystallographic analysis illustrated for the first time how a long saturated chain can fit in the core structure of an acyltransferase domain through a dedicated channel. The structures also revealed the unexpected binding of a 12-mer peptide that might provide insight into domain-domain interaction.


Assuntos
Proteínas de Bactérias/química , Policetídeo Sintases/química , Sequência de Aminoácidos , Antibacterianos/síntese química , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Domínio Catalítico , Química Farmacêutica/métodos , Clonagem Molecular , Cristalografia por Raios X/métodos , Desenho de Fármacos , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Policetídeo Sintases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
18.
Sci Rep ; 13(1): 7045, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120636

RESUMO

The mycobacterial cell envelope consists of a typical plasma membrane, surrounded by a complex cell wall and a lipid-rich outer membrane. The biogenesis of this multilayer structure is a tightly regulated process requiring the coordinated synthesis and assembly of all its constituents. Mycobacteria grow by polar extension and recent studies showed that cell envelope incorporation of mycolic acids, the major constituent of the cell wall and outer membrane, is coordinated with peptidoglycan biosynthesis at the cell poles. However, there is no information regarding the dynamics of incorporation of other families of outer membrane lipids during cell elongation and division. Here, we establish that the translocation of non-essential trehalose polyphleates (TPP) occurs at different subcellular locations than that of the essential mycolic acids. Using fluorescence microscopy approaches, we investigated the subcellular localization of MmpL3 and MmpL10, respectively involved in the export of mycolic acids and TPP, in growing cells and their colocalization with Wag31, a protein playing a critical role in regulating peptidoglycan biosynthesis in mycobacteria. We found that MmpL3, like Wag31, displays polar localization and preferential accumulation at the old pole whereas MmpL10 is more homogenously distributed in the plasma membrane and slightly accumulates at the new pole. These results led us to propose a model in which insertion of TPP and mycolic acids into the mycomembrane is spatially uncoupled.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Trealose/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Parede Celular/metabolismo , Mycobacterium/metabolismo , Mycobacterium tuberculosis/metabolismo
19.
PLoS Pathog ; 6(10): e1001159, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20975946

RESUMO

The species-specific phenolic glycolipid 1 (PGL-1) is suspected to play a critical role in the pathogenesis of leprosy, a chronic disease of the skin and peripheral nerves caused by Mycobacterium leprae. Based on studies using the purified compound, PGL-1 was proposed to mediate the tropism of M. leprae for the nervous system and to modulate host immune responses. However, deciphering the biological function of this glycolipid has been hampered by the inability to grow M. leprae in vitro and to genetically engineer this bacterium. Here, we identified the M. leprae genes required for the biosynthesis of the species-specific saccharidic domain of PGL-1 and reprogrammed seven enzymatic steps in M. bovis BCG to make it synthesize and display PGL-1 in the context of an M. leprae-like cell envelope. This recombinant strain provides us with a unique tool to address the key questions of the contribution of PGL-1 in the infection process and to study the underlying molecular mechanisms. We found that PGL-1 production endowed recombinant BCG with an increased capacity to exploit complement receptor 3 (CR3) for efficient invasion of human macrophages and evasion of inflammatory responses. PGL-1 production also promoted bacterial uptake by human dendritic cells and dampened their infection-induced maturation. Our results therefore suggest that M. leprae produces PGL-1 for immune-silent invasion of host phagocytic cells.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/fisiologia , Glicolipídeos/genética , Glicolipídeos/fisiologia , Mycobacterium bovis/genética , Fagócitos/imunologia , Fagócitos/metabolismo , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/fisiologia , Antígenos de Bactérias/metabolismo , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Glicolipídeos/metabolismo , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Modelos Biológicos , Mycobacterium bovis/metabolismo , Mycobacterium leprae/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo
20.
Infect Immun ; 79(7): 2829-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21576344

RESUMO

Onset of the adaptive immune response in mice infected with Mycobacterium tuberculosis is accompanied by slowing of bacterial replication and establishment of a chronic infection. Stabilization of bacterial numbers during the chronic phase of infection is dependent on the activity of the gamma interferon (IFN-γ)-inducible nitric oxide synthase (NOS2). Previously, we described a differential signature-tagged mutagenesis screen designed to identify M. tuberculosis "counterimmune" mechanisms and reported the isolation of three mutants in the H37Rv strain background containing transposon insertions in the rv0072, rv0405, and rv2958c genes. These mutants were impaired for replication and virulence in NOS2(-/-) mice but were growth-proficient and virulent in IFN-γ(-/-) mice, suggesting that the disrupted genes were required for bacterial resistance to an IFN-γ-dependent immune mechanism other than NOS2. Here, we report that the attenuation of these strains is attributable to an underlying transposon-independent deficiency in biosynthesis of phthiocerol dimycocerosate (PDIM), a cell wall lipid that is required for full virulence in mice. We performed whole-genome resequencing of a PDIM-deficient clone and identified a spontaneous point mutation in the putative polyketide synthase PpsD that results in a G44C amino acid substitution. We demonstrate by complementation with the wild-type ppsD gene and reversion of the ppsD gene to the wild-type sequence that the ppsD(G44C) point mutation is responsible for PDIM deficiency, virulence attenuation in NOS2(-/-) and wild-type C57BL/6 mice, and a growth advantage in vitro in liquid culture. We conclude that PDIM biosynthesis is required for M. tuberculosis resistance to an IFN-γ-mediated immune response that is independent of NOS2.


Assuntos
Interferon gama/imunologia , Lipídeos/biossíntese , Mycobacterium tuberculosis/imunologia , Policetídeo Sintases/genética , Imunidade Adaptativa , Substituição de Aminoácidos , Animais , Parede Celular/química , Elementos de DNA Transponíveis , Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Mutação Puntual , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA