Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 25(23): 5925-5943, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27761959

RESUMO

Assessing the extent to which changes in lacustrine biodiversity are affected by anthropogenic or climatic forces requires extensive palaeolimnological data. We used high-throughput sequencing to generate time-series data encompassing over 2200 years of microbial eukaryotes (protists and Fungi) diversity changes from the sedimentary DNA record of two lakes (Lake Bourget in French Alps and Lake Igaliku in Greenland). From 176 samples, we sequenced a large diversity of microbial eukaryotes, with a total 16 386 operational taxonomic units distributed within 50 phylogenetic groups. Thus, microbial groups, such as Chlorophyta, Dinophyceae, Haptophyceae and Ciliophora, that were not previously considered in lacustrine sediment record analyses appeared to be potential biological markers of trophic status changes. Our data suggest that shifts in relative abundance of extant species, including shifts between rare and abundant taxa, drive ecosystem responses to local and global environmental changes. Community structure shift events were concomitant with major climate variations (more particularly in Lake Igaliku). However, this study shows that the impacts of climatic fluctuations may be overpassed by the high-magnitude eutrophication impacts, as observed in the eutrophicated Lake Bourget. Overall, our data show that DNA preserved in sediment constitutes a precious archive of information on past biodiversity changes.


Assuntos
Biodiversidade , Lagos , Microbiologia da Água , Clima , Ecossistema , Eucariotos/classificação , Eutrofização , França , Fungos/classificação , Sedimentos Geológicos , Groenlândia , Filogenia , Dinâmica Populacional
2.
Sci Total Environ ; 817: 152596, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34963602

RESUMO

Carbon-14 is a key radionuclide in the safety assessment of deep geological repositories (DGR) for low- and intermediate-level radioactive waste (L/ILW). Irradiated metallic wastes generated during the decommissioning of nuclear power plants are an important source of 14C after their disposal in a DGR. The chemical form of 14C released from the irradiated metallic wastes determines the pathway of migration from the DGR into the environment. In a long-term corrosion experiment with irradiated steel simulating the hyper-alkaline, anoxic conditions of a cement-based DGR, total inorganic (TI14C2) and organic 14C contents (TO14C) in the liquid and gas phases (TG14C), as well as individual 14C-bearing carbon compounds by compound-specific radiocarbon analysis (CSRA), were quantified using accelerator mass spectrometry (AMS). The AMS-based quantification allows the determination of 14C in the pico- to femtomolar concentration range. An initial increase in TO14C was observed, which could be attributed partially to the release of 14C-bearing oxygenated carbon compounds. In the long term, TO14C and the TI14C remain constant, while TG14C increases over time according to a corrosion rate of steel of 1 nm/yr. In solution, 14C-bearing carboxylic acids (CAs) contribute ~40% to TO14C, and they are the main 14C carriers along with 14C-bearing carbonate (14CO32-). The remaining fraction of TO14C (~ 60%) is likely due to the presence of as yet non-identified polymeric or colloidal organic material. In the gas phase, 14CH4 accounts for more than 80% of the TG14C, while only trace amounts of 14CO, and other small 14C-bearing hydrocarbons have been detected. In a DGR, the release of 14C will be mainly in gaseous form and migrate via the gas pathway from the repository near field to the surrounding host rock and eventually to the environment.


Assuntos
Resíduos Radioativos , Radioisótopos de Carbono , Corrosão , Resíduos Radioativos/análise , Aço
3.
Chemosphere ; 250: 126230, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234616

RESUMO

The Swiss disposal concept foresees that carbon-14 (14C) is predominantly released from irradiated steel disposed of in a cement-based repository for low- and intermediate-level radioactive waste. To predict how 14C migrates in the cementitious environment of the repository near field and subsequently in the host rock, knowledge about the carbon speciation during anoxic steel corrosion in alkaline conditions is therefore essential. To this end, batch-type corrosion experiments with carbon-containing zero-valent iron (ZVI) powders subject to oxidative pre-treatments were carried out in NaOH solution at pH 11 and 12.5. Alkanes and alkenes (C1-C7) were identified in the gas phase and produced on the iron surface by a Fischer-Tropsch type mechanism. The kind of oxidative pre-treatment has an effect on the production rate of hydrocarbons (HCs). In the liquid phase, carboxylic acids were identified and produced during the oxidative pre-treatment of the ZVI powders. They are released instantaneously from the oxide layer upon contact with the alkaline solution. The kind of oxidative treatment and the exposure time to oxic conditions directly influence the amount of carboxylic acids accommodated in the oxide layer.


Assuntos
Carbono/química , Ferro/química , Poluentes Químicos da Água/química , Radioisótopos de Carbono , Corrosão , Compostos Orgânicos , Oxirredução , Aço/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA