Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144763

RESUMO

The present study is aimed at determining whether leaf volatile organic compounds (VOCs) are good markers of the grapevine response to defence elicitors in the field. It was carried out in two distinct French vineyards (Burgundy and Bordeaux) over 3 years. The commercial elicitor Bastid® (Syngenta, Saint-Sauveur, France) (COS-OGA) was first used to optimise the VOCs' capture in the field; by bagging stems together with a stir bar sorptive extraction (SBSE) sensor. Three elicitors (Bastid®, copper sulphate and methyl jasmonate) were assessed at three phenological stages of the grapevines by monitoring stilbene phytoalexins and VOCs. Stilbene production was low and variable between treatments and phenological stages. VOCs-particularly terpenes-were induced by all elicitors. However, the response profiles depended on the type of elicitor, the phenological stage and the vineyard, and no sole common VOC was found. The levels of VOC emissions discriminated between weak (Bastid® and copper sulphate) and strong (methyl jasmonate) inducers. Ocimene isomers were constitutively present in the overall blends of the vineyards and increased by the elicitors' treatments, whilst other VOCs were newly released throughout the growing seasons. Nonetheless, the plant development and climate factors undoubtedly influenced the release and profiles of the leaf VOCs.


Assuntos
Estilbenos , Compostos Orgânicos Voláteis , Acetatos , Sulfato de Cobre , Ciclopentanos , Fazendas , Oxilipinas , Folhas de Planta , Terpenos
2.
Physiol Plant ; 171(3): 424-434, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33140863

RESUMO

Esca is a complex grapevine trunk disease caused by wood-rotting ascomycetes and basidiomycetes and leading to several foliar and wood symptoms. Given that the esca expression can be influenced by several environmental, physiological, and genetic factors, foliar symptoms are inconsistent in incidence and prevalence and may appear 1 year but not the following. We have previously reported a clone-dependent expression of the disease in cv Chardonnay. Owing to metabolome analysis, we could discriminate the metabolite fingerprint of green leaves collected on diseased vines of clones 76 and 95. These clone-dependent fingerprints were year-dependent in intensity and nature. The present work was conducted to determine if the clone-dependent disease expression observed is specific to Chardonnay or if it also occurs in another cultivar. A plot located in the Jura vineyard (France) and planted with both 1004 and 1026 clones of Trousseau, a cultivar highly susceptible to esca, was thus selected and studied during 2017 and 2018. A year-dependent variation of the symptoms expression was first observed and a possible relationship with rainfall is hypothesized and discussed. Moreover, a higher percentage of the clone 1026 vines expressed disease, compared to the 1004 ones, suggesting the higher susceptibility of this clone. Finally, metabolomic analyses of the remaining green leaves (i.e, without symptom expression) of partial esca-apoplectic vines allowed us to confirm a clone-dependent metabolic response to the disease. The metabolite fingerprints obtained differed in nature and intensity to those previously reported for Chardonnay and also between years.


Assuntos
Vitis , Células Clonais , Metaboloma , Doenças das Plantas , Folhas de Planta/genética , Vitis/genética
3.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299533

RESUMO

Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.


Assuntos
Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Vitis/microbiologia , Compostos Orgânicos Voláteis/análise , Fungicidas Industriais/análise , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Sesquiterpenos/análise , Vitis/química
4.
Phytopathology ; 110(11): 1821-1837, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32597304

RESUMO

Botryosphaeria dieback is one of the most significant grapevine trunk diseases that affects the sustainability of the vineyards and provokes economic losses. The causal agents, Botryosphaeriaceae species, live in and colonize the wood of the perennial organs causing wood necrosis. Diseased vines show foliar symptoms, chlorosis, or apoplexy, associated to a characteristic brown stripe under the bark. According to the susceptibility of the cultivars, specific proteins such as PR-proteins and other defense-related proteins are accumulated in the brown stripe compared with the healthy woody tissues. In this study, we enhanced the characterization of the brown stripe and the healthy wood by obtaining a metabolite profiling for the three cultivars Chardonnay, Gewurztraminer, and Mourvèdre to deeper understand the interaction between the Botryosphaeria dieback pathogens and grapevine. The study confirmed a specific pattern according to the cultivar and revealed significant differences between the brown stripe and the healthy wood, especially for phytochemical and lipid compounds. This is the first time that such chemical discrimination was made and that lipids were so remarkably highlighted in the interaction of Botryosphaeriaceae species and grapevine. Their role in the disease development is discussed.


Assuntos
Ascomicetos , Vitis , Metabolômica , Doenças das Plantas , Madeira
5.
Mycorrhiza ; 28(1): 1-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28725961

RESUMO

In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.


Assuntos
Membrana Celular/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Proteínas de Membrana/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Proteoma , Membrana Celular/metabolismo , Glomeromycota/fisiologia , Medicago truncatula/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose
6.
Mol Plant Microbe Interact ; 28(11): 1227-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26106900

RESUMO

Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola-infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.


Assuntos
Glicoproteínas/metabolismo , Oomicetos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Vitis/metabolismo , Sequência de Aminoácidos , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Cromatografia por Troca Iônica , Simulação por Computador , Proteínas Fúngicas/metabolismo , Glicoproteínas/classificação , Glicoproteínas/genética , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Oomicetos/fisiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Vitis/genética , Vitis/microbiologia
7.
BMC Plant Biol ; 14: 255, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25267185

RESUMO

BACKGROUND: Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS: Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS: Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.


Assuntos
Membrana Celular/química , Medicago truncatula , Microssomos , Raízes de Plantas , Detergentes/química , Microdomínios da Membrana/química , Solubilidade
8.
EMBO J ; 28(22): 3534-48, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19779455

RESUMO

Heat shock and other environmental stresses rapidly induce transcriptional responses subject to regulation by a variety of post-translational modifications. Among these, poly(ADP-ribosyl)ation and sumoylation have received growing attention. Here we show that the SUMO E3 ligase PIASy interacts with the poly(ADP-ribose) polymerase PARP-1, and that PIASy mediates heat shock-induced poly-sumoylation of PARP-1. Furthermore, PIASy, and hence sumoylation, appears indispensable for full activation of the inducible HSP70.1 gene. Chromatin immunoprecipitation experiments show that PIASy, SUMO and the SUMO-conjugating enzyme Ubc9 are rapidly recruited to the HSP70.1 promoter upon heat shock, and that they are subsequently released with kinetics similar to PARP-1. Finally, we provide evidence that the SUMO-targeted ubiquitin ligase RNF4 mediates heat-shock-inducible ubiquitination of PARP-1, regulates the stability of PARP-1, and, like PIASy, is a positive regulator of HSP70.1 gene activity. These results, thus, point to a novel mechanism for regulating PARP-1 transcription function, and suggest crosstalk between sumoylation and RNF4-mediated ubiquitination in regulating gene expression in response to heat shock.


Assuntos
Resposta ao Choque Térmico/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Proteína SUMO-1/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células Jurkat , Camundongos , Modelos Biológicos , Poli(ADP-Ribose) Polimerase-1 , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Spodoptera , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
9.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840101

RESUMO

(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.

10.
Front Plant Sci ; 14: 1141700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180397

RESUMO

In the past, most grapevine trunk diseases (GTDs) have been controlled by treatments with sodium arsenite. For obvious reasons, sodium arsenite was banned in vineyards, and consequently, the management of GTDs is difficult due to the lack of methods with similar effectiveness. Sodium arsenite is known to have a fungicide effect and to affect the leaf physiology, but its effect on the woody tissues where the GTD pathogens are present is still poorly understood. This study thus focuses on the effect of sodium arsenite in woody tissues, particularly in the interaction area between asymptomatic wood and necrotic wood resulting from the GTD pathogens' activities. Metabolomics was used to obtain a metabolite fingerprint of sodium arsenite treatment and microscopy to visualize its effects at the histo-cytological level. The main results are that sodium arsenite impacts both metabolome and structural barriers in plant wood. We reported a stimulator effect on plant secondary metabolites in the wood, which add to its fungicide effect. Moreover, the pattern of some phytotoxins is affected, suggesting the possible effect of sodium arsenite in the pathogen metabolism and/or plant detoxification process. This study brings new elements to understanding the mode of action of sodium arsenite, which is useful in developing sustainable and eco-friendly strategies to better manage GTDs.

11.
Proteome Sci ; 10(1): 37, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672774

RESUMO

BACKGROUND: Shotgun proteomics represents an attractive technical framework for the study of membrane proteins that are generally difficult to resolve using two-dimensional gel electrophoresis. The use of iTRAQ, a set of amine-specific isobaric tags, is currently the labelling method of choice allowing multiplexing of up to eight samples and the relative quantification of multiple peptides for each protein. Recently the hyphenation of different separation techniques with mass spectrometry was used in the analysis of iTRAQ labelled samples. OFFGEL electrophoresis has proved its effectiveness in isoelectric point-based peptide and protein separation in solution. Here we describe the first application of iTRAQ-OFFGEL-LC-MS/MS on microsomal proteins from plant material. The investigation of the iTRAQ labelling effect on peptide electrofocusing in OFFGEL fractionator was carried out on Medicago truncatula membrane protein digests. RESULTS: In-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully used in this study. The focusing quality in OFFGEL electrophoresis was maintained for iTRAQ labelled peptides with a higher than expected number of identified peptides in basic OFFGEL-fractions. We furthermore observed, by comparing the isoelectric point (pI) fractionation of unlabelled versus labelled samples, a non-negligible pI shifts mainly to higher values. CONCLUSIONS: The present work describes a feasible and novel protocol for in-solution protein digestion in which the filter unit permits protein retention and buffer removal. The data demonstrates an impact of iTRAQ labelling on peptide electrofocusing behaviour in OFFGEL fractionation compared to their native counterpart by the induction of a substantial, generally basic pI shift. Explanations for the occasionally observed acidic shifts are likewise presented.

12.
J Fungi (Basel) ; 8(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35205905

RESUMO

Copper-based preparations have been used for more than 100 years in viticulture to control downy mildew caused by Plasmopara viticola. LC2017, and a new low-copper-based formulation, has been developed to control grapevine trunk diseases (GTDs). Previous greenhouse studies showed the potential of LC2017 to control GTDs by both fungistatic and plant defense elicitor effects. Here, we further characterize the effects of LC2017 in the field determining its impact on: (i) incidence of Esca, (ii) the vine microbiome, (iii) the vine physiology and (iv) enological parameters of juices. We observed a progressive decrease of cumulate Esca incidence in treated vines over the years with annual fluctuation related to the known erratic emergence of GTD symptoms. Neither harmful effects of LC2017 on the vine microbiota, nor on vine physiology were observed (at both transcriptomic and metabolomic levels). Similarly, no impact of LC2017 was observed on the enological properties of berries except for sugar content in juice from esca-diseased vines. The most important result concerns the transcriptomic profiles: that of diseased and LC2017 treated vines differs from that of disease untreated ones, showing a treatment effect. Moreover, the transcriptomic profile of diseased and LC2017-treated vines is similar to that of untreated asymptomatic vines, suggesting control of the disease.

13.
Front Plant Sci ; 13: 998273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438082

RESUMO

Using plant defense elicitors to protect crops against diseases is an attractive strategy to reduce chemical pesticide use. However, development of elicitors remains limited because of variable effectiveness in the field. In contrast to fungicides that directly target pathogens, elicitors activate plant immunity, which depends on plant physiological status. Other products, the biostimulants, can improve certain functions of plants. In this study, the objective was to determine whether a biostimulant via effects on grapevine physiology could increase effectiveness of a defense elicitor. A new methodology was developed to study biostimulant activity under controlled conditions using in vitro plantlets. Both biostimulant and defense elicitor used in the study were plant extracts. When added to the culture medium, the biostimulant accelerated the beginning of plantlet growth and affected the shoot and root development. It also modified metabolomes and phytohormone contents of leaves, stems, and roots. When applied on shoots, the defense elicitor changed metabolite and phytohormone contents, but effects were different depending on whether plantlets were biostimulated or controls. Defense responses and protection against Plasmopara viticola (downy mildew agent) were induced only for plantlets previously treated with the biostimulant, Therefore, the biostimulant may act by priming the defense elicitor action. In this study, a new method to screen biostimulants active on grapevine vegetative growth was used to demonstrate that a biostimulant can optimize the efficiency of a plant defense elicitor.

14.
Invest Clin ; 52(2): 121-39, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21866785

RESUMO

Understanding the mode of Schistosoma mansoni larval invasion and the mechanism of immune evasion utilized by larvae and adult worms is essential for a rational development of vaccines or drugs to prevent or cure the disease. This parasite has a very complex molecular organization in all parasite stages, and identifying the major parasite proteins would give clues to schistosome metabolism and to the interaction of the parasite with the host immune system. Our goal was the evaluation of the protein parasite repertoire using a proteomic approach, and the characterization of protein extracts from two different parasite stages of a Venezuelan isolate, such as cercariae and adult worms, previously performed by other authors in some other strains. A comparison among authors was made. Besides, we aimed to identify different isoforms of one of the vaccine candidates, the gluthation-S-transferase protein (Sm28GST), by 2D SDS-PAGE and mass spectrometry, and to achieve its immunologic detection using sera from rabbits immunized with synthetic peptides derived from the Sm28GST protein. These techniques allowed the identification of some of the target molecules of the protective immune response that are being evaluated as potential members of a multi-component and multi-stage anti-S. mansoni vaccine and to clarify if the selected peptides induce antibodies that are able to recognize different isoforms of the Sm28GST.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Glutationa Transferase/genética , Glutationa Transferase/imunologia , Proteínas de Helminto/genética , Schistosoma mansoni/genética , Schistosoma mansoni/imunologia , Animais , Cercárias , Proteômica , Vacinas , Venezuela
15.
BMC Microbiol ; 9: 127, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19549320

RESUMO

BACKGROUND: Thiomonas strains are ubiquitous in arsenic-contaminated environments. Differences between Thiomonas strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five Thiomonas strains, that are interesting in terms of arsenic metabolism were selected: T. arsenivorans, Thiomonas spp. WJ68 and 3As are able to oxidise As(III), while Thiomonas sp. Ynys1 and T. perometabolis are not. Moreover, T. arsenivorans and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor. RESULTS: The metabolism of carbon and arsenic was compared in the five Thiomonas strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/rpoA gene phylogeny, especially regarding arsenic metabolism. Physiologically, T. perometabolis and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the aox arsenic-oxidising genes and carried only a single ars arsenic resistance operon. Thiomonas arsenivorans belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in T. arsenivorans, the rbc/cbb genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in Thiomonas sp. 3As. CONCLUSION: Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.


Assuntos
Adaptação Fisiológica , Arsênio/metabolismo , Betaproteobacteria/enzimologia , Carbono/metabolismo , Arsenitos/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Crescimento Quimioautotrófico/efeitos dos fármacos , Filogenia , Especificidade da Espécie
16.
Front Plant Sci ; 10: 1117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620151

RESUMO

In a context of a sustainable viticulture, the implementation of innovative eco-friendly strategies, such as elicitor-triggered immunity, requires a deep knowledge of the molecular mechanisms underlying grapevine defense activation, from pathogen perception to resistance induction. During plant-pathogen interaction, the first step of plant defense activation is ensured by the recognition of microbe-associated molecular patterns, which are elicitors directly derived from pathogenic or beneficial microbes. Vitis vinifera, like other plants, can perceive elicitors of different nature, including proteins, amphiphilic glycolipid, and lipopeptide molecules as well as polysaccharides, thanks to their cognate pattern recognition receptors, the discovery of which recently began in this plant species. Furthermore, damage-associated molecular patterns are another class of elicitors perceived by V. vinifera as an invader's hallmark. They are mainly polysaccharides derived from the plant cell wall and are generally released through the activity of cell wall-degrading enzymes secreted by microbes. Elicitor perception and subsequent activation of grapevine immunity end in some cases in efficient grapevine resistance against pathogens. Using complementary approaches, several molecular markers have been identified as hallmarks of this induced resistance stage. This review thus focuses on the recognition of elicitors by Vitis vinifera describing the molecular mechanisms triggered from the elicitor perception to the activation of immune responses. Finally, we discuss the fact that the link between elicitation and induced resistance is not so obvious and that the formulation of resistance inducers remains a key step before their application in vineyards.

17.
J Biomed Biotechnol ; 2008: 564127, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18401453

RESUMO

Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, alpha-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues.


Assuntos
Biomarcadores Tumorais/química , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Eletroforese/métodos , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Feminino , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Mutação
18.
Phytochemistry ; 69(4): 865-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18006028

RESUMO

Proteins belonging to the family of DING proteins are ubiquitous in animals and several of them are associated with various diseases. Their presence in a few plant species has previously been reported and the St John's Wort DING protein was recently described as an inhibitor of HIV replication and transcription. However, data about DING protein occurrence in plants and their biochemical properties remain almost nonexistent. We describe methods for the purification of DING proteins from plants that may have general applicability since they are not dependent upon specific affinity ligands, contrary to previously described protocols. Cibacron Blue chromatography, sometimes preceded by an ion-exchange chromatographic step, is suitable for most plant extracts. DING proteins were purified from various species and cell types and their identity was confirmed immunologically and, in some cases, by N-terminal sequence analysis, indicating that they are ubiquitous in the plant kingdom. They are associated with the cell wall and sometimes secreted in the medium for in vitro grown cells. High-molecular-weight DING precursors were often observed. Internal peptides were also sequenced, as a prelude to gene cloning experiments.


Assuntos
Fármacos Anti-HIV/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/farmacologia , Arabidopsis/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Hypericum/metabolismo , Ipomoea batatas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica , Solanum tuberosum/metabolismo , Nicotiana/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Clin Chim Acta ; 388(1-2): 106-14, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17996735

RESUMO

BACKGROUND: Little emphasis has been placed today on the elucidation of protein alterations in male breast carcinogenesis. METHODS: Protein extracts were subjected to both isoelectric focusing (IEF) and non-equilibrium pH gradient electrophoretic (NEPHGE) analyses. Differentially expressed proteins in tumor tissues were identified by matrix assisted laser desorption /ionization time of flight (MALDI-TOF) mass spectrometry and database search. RESULTS: Some of the alterations involve variations in the expression of cytokeratins 8, 18 and 19. More interestingly, tropomyosin1, a protein known to play a role in suppression of the malignant phenotype, was found to be under-expressed in cancer tissues, implicating a possible pivotal role for this protein in male breast carcinogenesis. Co-upregulation of molecular chaperones (heat shock protein HSP27 and protein disulfide isomerase), stress related proteins (peroxiredoxin 1 and peptidylprolyl isomerase A) and glycolytic enzymes (enolase 1) occurred also in male breast tumors. Some of the remaining alterations include proteins involved in invasion and metastasis, such as galectin 1 and cathepsin D. CONCLUSIONS: The present study represents a first proteomic investigation of protein alterations in infiltrating ductal carcinomas (IDCA) of the male breast. A number of protein alterations in tumor tissues have been characterised thus, providing new insights into the molecular mechanisms underlying this disease.


Assuntos
Neoplasias da Mama Masculina/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama Masculina/patologia , Transformação Celular Neoplásica/patologia , Eletroforese em Gel Bidimensional , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Clin Chim Acta ; 393(2): 95-102, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18424265

RESUMO

BACKGROUND: In this study we applied a serological proteomics-based approach (SERPA) to identify tumor antigens that commonly induce a humoral immune response in patients with infiltrating ductal breast carcinomas. METHODS: Sera obtained at the time of diagnosis from 40 patients with invasive breast cancer and 42 healthy controls were screened individually for the presence of IgG antibodies to MCF-7 cell line proteins. Immunoreactive proteins were isolated and subsequently identified by MALDI-TOF mass spectrometry. RESULTS: We identified 26 proteins that reacted with antibodies in the sera from breast cancer patients. Among these antigens, a significantly higher frequency occurs against the molecular chaperone HSP60, the tumor suppressor prohibitin, beta-tubulin, the haptoglobin-related protein and peroxiredoxin-2. Immunoreactivity to hnRNPK, Mn-SOD and F1-ATPase was also clearly detected in the patients group, whereas scarcely in control sera. By contrast, two other antigens identified as cytokeratins 8 and 18, as well as, F1-actin were found to elicit humoral immune responses in both control and breast cancer patients' sera. CONCLUSIONS: The immunoproteomic approach implemented here offers a powerful tool for determining novel tumor antigens that elicit a humoral immune response in patients with invasive breast cancer. These antigens and/or their related circulating antibodies may display clinical usefulness as potential diagnostic markers and provide a means for a better understanding of the molecular mechanisms underlying breast cancer development.


Assuntos
Anticorpos Antineoplásicos/biossíntese , Antígenos de Neoplasias/imunologia , Proteínas Sanguíneas/metabolismo , Neoplasias da Mama/imunologia , Proteoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Proteínas Sanguíneas/química , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA