Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742638

RESUMO

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Assuntos
Cobamidas , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , RNA Mensageiro , Riboswitch , Riboswitch/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Cobamidas/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/genética , RNA Helicases/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas da Membrana Bacteriana Externa , Polirribonucleotídeo Nucleotidiltransferase , Proteínas de Membrana Transportadoras
2.
Mol Cell ; 68(1): 158-170.e3, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28918899

RESUMO

Initiation is the rate-limiting step of translation, and in bacteria, mRNA secondary structure has been extensively reported as limiting the efficiency of translation by occluding the ribosome-binding site. In striking contrast with this inhibitory effect, we report here that stem-loop structures located within coding sequences instead activate translation initiation of the Escherichia coli fepA and bamA mRNAs involved in iron acquisition and outer membrane proteins assembly, respectively. Both structures promote ribosome binding in vitro, independently of their nucleotide sequence. Moreover, two small regulatory RNAs, OmrA and OmrB, base pair to and most likely disrupt the fepA stem-loop structure, thereby repressing FepA synthesis. By expanding our understanding of how mRNA cis-acting elements regulate translation, these data challenge the widespread view of mRNA secondary structures as translation inhibitors and show that translation-activating elements embedded in coding sequences can be targeted by small RNAs to inhibit gene expression.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Receptores de Superfície Celular/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Pareamento de Bases , Sequência de Bases , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sequências Repetidas Invertidas , Ferro/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Receptores de Superfície Celular/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
3.
Nucleic Acids Res ; 50(12): 6753-6768, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748881

RESUMO

Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.


Assuntos
Proteínas de Escherichia coli , Nitratos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética
5.
Methods ; 117: 67-76, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693881

RESUMO

In all three kingdoms of life, RNA is not only involved in the expression of genetic information, but also carries out extremely diverse cellular functions. This versatility is essentially due to the fact that RNA molecules can exploit the power of base pairing to allow them to fold into a wide variety of structures through which they can perform diverse roles, but also to selectively target and bind to other nucleic acids. This is true in particular for bacterial small regulatory RNAs that act by imperfect base-pairing with target mRNAs, and thereby control their expression through different mechanisms. Here we outline an overview of in vivo and in vitro approaches that are currently used to gain mechanistic insights into how these sRNAs control gene expression in bacteria.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/química , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Staphylococcus aureus/genética , Pareamento de Bases , Sítios de Ligação , Escherichia coli/metabolismo , Genes Reporter , Impressão Molecular/métodos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem/métodos , Staphylococcus aureus/metabolismo
6.
Nucleic Acids Res ; 44(20): 9650-9666, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27439713

RESUMO

Two-component systems (TCS) and small regulatory RNAs (sRNAs) are both widespread regulators of gene expression in bacteria. TCS are in most cases transcriptional regulators. A large class of sRNAs act as post-transcriptional regulators of gene expression that modulate the translation and/or stability of target-mRNAs. Many connections have been recently unraveled between these two types of regulators, resulting in mixed regulatory circuits with poorly characterized properties. This study focuses on the negative feedback circuit that exists between the EnvZ-OmpR TCS and the OmrA/B sRNAs. We have shown that OmpR directly activates transcription from the omrA and omrB promoters, allowing production of OmrA/B sRNAs that target multiple mRNAs, including the ompR-envZ mRNA. This control of ompR-envZ by the Omr sRNAs does not affect the amount of phosphorylated OmpR, i.e. the presumably active form of the regulator. Accordingly, expression of robust OmpR targets, such as the ompC or ompF porin genes, is not affected by OmrA/B. However, we find that several OmpR targets, including OmrA/B themselves, are sensitive to changing total OmpR levels. As a result, OmrA/B limit their own synthesis. These findings unravel an additional layer of control in the expression of some OmpR targets and suggest the existence of differential regulation within the OmpR regulon.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Reguladores , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
7.
PLoS Genet ; 9(1): e1003156, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300478

RESUMO

PhoQ/PhoP is a central two-component system involved in magnesium homeostasis, pathogenicity, cell envelope composition, and acid resistance in several bacterial species. The small RNA GcvB is identified here as a novel direct regulator of the synthesis of PhoQ/PhoP in Escherichia coli, and this control relies on a novel pairing region of GcvB. After MicA, this is the second Hfq-dependent small RNA that represses expression of the phoPQ operon. Both MicA and GcvB bind phoPQ mRNA in vivo and in vitro around the translation initiation region of phoP. Binding of either small RNA is sufficient to inhibit ribosome binding and induce mRNA degradation. Surprisingly, however, MicA and GcvB have different effects on the levels of the PhoP protein and therefore on the expression of the PhoP regulon. These results highlight the complex connections between small RNAs and transcriptional regulation networks in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/genética , Magnésio/metabolismo , Biossíntese de Proteínas , DNA Glicosilases/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Estabilidade de RNA/genética , Regulon , Ribossomos/genética
8.
Annu Rev Microbiol ; 64: 43-60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20420522

RESUMO

TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates, called siderophores, as well as vitamin B(12), nickel complexes, and carbohydrates. The transport process requires energy in the form of proton motive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins such as serum transferrin and hemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years, many new structures of TBDTs have been solved in various states, resulting in a more complete understanding of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with the TonB-ExbB-ExbD complex. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure, and function in TBDTs and questions remaining to be answered.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Bactérias/genética , Transporte Biológico , Metabolismo dos Carboidratos , Metabolismo Energético , Ferro/metabolismo , Modelos Biológicos , Níquel/metabolismo , Força Próton-Motriz , Sideróforos/metabolismo , Vitamina B 12/metabolismo
9.
mBio ; 13(5): e0098122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000733

RESUMO

In order to respond to ever-changing environmental cues, bacteria display resilient regulatory mechanisms controlling gene expression. At the post-transcriptional level, this is achieved by a combination of RNA-binding proteins, such as ribonucleases (RNases), and regulatory RNAs, including antisense RNAs (asRNAs). Bound to their complementary mRNA, asRNAs are primary targets for the double-strand-specific endoribonuclease, RNase III. Taking advantage of our own and previously published transcriptomic data sets obtained in strains inactivated for RNase III, we selected several candidate asRNAs and confirmed the existence of RNase III-sensitive asRNAs for crp, ompR, phoP, and flhD genes, all encoding global regulators of gene expression in Escherichia coli. Using FlhD, a component of the master regulator of motility (FlhD4C2), as our model, we demonstrate that the asRNA AsflhD, transcribed from the coding sequence of flhD, is involved in the fine-tuning of flhD expression and thus participates in the control of motility. IMPORTANCE The role of antisense RNAs (asRNAs) in the regulation of gene expression remains largely unexplored in bacteria. Here, we confirm that asRNAs can be part of layered regulatory networks, since some are found opposite to genes encoding global regulators. In particular, we show how an antisense RNA (AsflhD) to the flhD gene, encoding the transcription factor serving as the primary regulator of bacterial swimming motility (FlhD4C2), controls flhD expression, which in turn affects the expression of other genes of the motility cascade. The role of AsflhD highlights the importance of fine-tuning mechanisms mediated by asRNAs in the control of complex regulatory networks.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Antissenso/genética , Regulação Bacteriana da Expressão Gênica , Ribonuclease III/genética , Ribonuclease III/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
10.
Mol Microbiol ; 76(2): 467-79, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20345657

RESUMO

Numerous small RNAs regulators of gene expression exist in bacteria. A large class of them binds to the RNA chaperone Hfq and act by base pairing interactions with their target mRNA, thereby affecting their translation and/or stability. They often have multiple direct targets, some of which may be regulators themselves, and production of a single sRNA can therefore affect the expression of dozens of genes. We show in this study that the synthesis of the Escherichia coli pleiotropic PhoPQ two-component system is repressed by MicA, a sigma(E)-dependent sRNA regulator of porin biogenesis. MicA directly pairs with phoPQ mRNA in the translation initiation region of phoP and presumably inhibits translation by competing with ribosome binding. Consequently, MicA downregulates several members of the PhoPQ regulon. By linking PhoPQ to sigma(E), our findings suggest that major cellular processes such as Mg(2+) transport, virulence, LPS modification or resistance to antimicrobial peptides are modulated in response to envelope stress. In addition, we found that Hfq strongly affects the expression of phoP independently of MicA, raising the possibility that even more sRNAs, which remain to be identified, could regulate PhoPQ synthesis.


Assuntos
Proteínas de Bactérias/biossíntese , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/biossíntese , Regulação Bacteriana da Expressão Gênica , MicroRNAs/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/antagonistas & inibidores , Escherichia coli/fisiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Regulon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA