Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065895

RESUMO

The StarDICE experiment strives to establish an instrumental metrology chain with a targeted accuracy of 1 mmag in griz bandpasses to meet the calibration requirements of next-generation cosmological surveys. Atmospheric transmission is a significant source of systematic uncertainty. We propose a solution relying on an uncooled infrared thermal camera to evaluate gray extinction variations. However, achieving accurate measurements with thermal imaging systems necessitates prior calibration due to temperature-induced effects, compromising their spatial and temporal precision. Moreover, these systems cannot provide scene radiance in physical units by default. This study introduces a new calibration process utilizing a tailored forward modeling approach. The method incorporates sensor, housing, flat-field support, and ambient temperatures, along with raw digital response, as input data. Experimental measurements were conducted inside a climatic chamber, with a FLIR Tau2 camera imaging a thermoregulated blackbody source. The results demonstrate the calibration effectiveness, achieving precise radiance measurements with a temporal pixel dispersion of 0.09 W m-2 sr-1 and residual spatial noise of 0.03 W m-2 sr-1. We emphasize that the accuracy of scene radiance retrieval can be systematically affected by the camera's close thermal environment, especially when the ambient temperature exceeds that of the scene.

2.
PLoS Genet ; 14(9): e1007627, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30199545

RESUMO

Increasing evidence suggests that dysregulation of lipid metabolism is associated with neurodegeneration in retinal diseases such as age-related macular degeneration and in brain disorders such as Alzheimer's and Parkinson's diseases. Lipid storage organelles (lipid droplets, LDs), accumulate in many cell types in response to stress, and it is now clear that LDs function not only as lipid stores but also as dynamic regulators of the stress response. However, whether these LDs are always protective or can also be deleterious to the cell is unknown. Here, we investigated the consequences of LD accumulation on retinal cell homeostasis under physiological and stress conditions in Drosophila and in mice. In wild-type Drosophila, we show that dFatp is required and sufficient for expansion of LD size in retinal pigment cells (RPCs) and that LDs in RPCs are required for photoreceptor survival during aging. Similarly, in mice, LD accumulation induced by RPC-specific expression of human FATP1 was non-toxic and promoted mitochondrial energy metabolism in RPCs and non-autonomously in photoreceptor cells. In contrast, the inhibition of LD accumulation by dFatp knockdown suppressed neurodegeneration in Aats-metFB Drosophila mutants, which carry elevated levels of reactive oxygen species (ROS). This suggests that abnormal turnover of LD may be toxic for photoreceptors cells of the retina under oxidative stress. Collectively, these findings indicate that FATP-mediated LD formation in RPCs promotes RPC and neuronal homeostasis under physiological conditions but could be deleterious for the photoreceptors under pathological conditions.


Assuntos
Envelhecimento/fisiologia , Coenzima A Ligases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Retina/metabolismo , Animais , Animais Geneticamente Modificados , Coenzima A Ligases/genética , Proteínas de Drosophila/genética , Metabolismo Energético/fisiologia , Proteínas de Transporte de Ácido Graxo/genética , Gotículas Lipídicas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retina/citologia , Retina/patologia
3.
J Cell Mol Med ; 24(9): 5057-5069, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212312

RESUMO

All-trans-retinal (atRAL) is a highly reactive carbonyl specie, known for its reactivity on cellular phosphatidylethanolamine in photoreceptor. It is generated by photoisomerization of 11-cis-retinal chromophore linked to opsin by the Schiff's base reaction. In ABCA4-associated autosomal recessive Stargardt macular dystrophy, atRAL results in carbonyl and oxidative stress, which leads to bisretinoid A2E, accumulation in the retinal pigment epithelium (RPE). This A2E-accumulation presents as lipofuscin fluorescent pigment, and its photooxidation causes subsequent damage. Here we describe protection against a lethal dose of atRAL in both photoreceptors and RPE in primary cultures by a lipidic polyphenol derivative, an isopropyl-phloroglucinol linked to DHA, referred to as IP-DHA. Next, we addressed the cellular and molecular defence mechanisms in commonly used human ARPE-19 cells. We determined that both polyunsaturated fatty acid and isopropyl substituents bond to phloroglucinol are essential to confer the highest protection. IP-DHA responds rapidly against the toxicity of atRAL and its protective effect persists. This healthy effect of IP-DHA applies to the mitochondrial respiration. IP-DHA also rescues RPE cells subjected to the toxic effects of A2E after blue light exposure. Together, our findings suggest that the beneficial role of IP-DHA in retinal cells involves both anti-carbonyl and anti-oxidative capacities.


Assuntos
Desidroepiandrosterona/farmacologia , Floroglucinol/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Retinaldeído/toxicidade , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Lipofuscina/química , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/química , Consumo de Oxigênio , Fenol/química , Floroglucinol/química , Pigmentação , Substâncias Protetoras/farmacologia , Ratos , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo , Relação Estrutura-Atividade
4.
J Cell Mol Med ; 20(9): 1651-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27072643

RESUMO

Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.


Assuntos
Citoproteção/efeitos dos fármacos , Floroglucinol/farmacologia , Células Fotorreceptoras de Vertebrados/metabolismo , Substâncias Protetoras/farmacologia , Epitélio Pigmentado da Retina/patologia , Retinaldeído/toxicidade , Retinoides/metabolismo , Animais , Benzopiranos/metabolismo , Morte Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Espectroscopia de Prótons por Ressonância Magnética , Ratos Long-Evans , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
5.
Genes (Basel) ; 13(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140676

RESUMO

Several pathogenic variants have been reported in the IMPG1 gene associated with the inherited retinal disorders vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). IMPG1 and its paralog IMPG2 encode for two proteoglycans, SPACR and SPACRCAN, respectively, which are the main components of the interphotoreceptor matrix (IPM), the extracellular matrix surrounding the photoreceptor cells. To determine the role of SPACR in the pathological mechanisms leading to RP and VMD, we generated a knockout mouse model lacking Impg1, the mouse ortholog. Impg1-deficient mice show abnormal accumulation of autofluorescent deposits visible by fundus imaging and spectral-domain optical coherence tomography (SD-OCT) and attenuated electroretinogram responses from 9 months of age. Furthermore, SD-OCT of Impg1-/- mice shows a degeneration of the photoreceptor layer, and transmission electron microscopy shows a disruption of the IPM and the retinal pigment epithelial cells. The decrease in the concentration of the chromophore 11-cis-retinal supports this loss of photoreceptors. In conclusion, our results demonstrate the essential role of SPACR in maintaining photoreceptors. Impg1-/- mice provide a novel model for mechanistic investigations and the development of therapies for VMD and RP caused by IMPG1 pathogenic variants.


Assuntos
Proteínas da Matriz Extracelular , Proteínas do Olho , Proteoglicanas , Retinose Pigmentar , Distrofia Macular Viteliforme , Animais , Matriz Extracelular/genética , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Camundongos , Células Fotorreceptoras/patologia , Proteoglicanas/genética , Epitélio Pigmentado da Retina/patologia , Pigmentos da Retina , Retinaldeído , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Distrofia Macular Viteliforme/genética
6.
J Biol Chem ; 285(24): 18759-68, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20356843

RESUMO

The isomerization of all-trans retinol (vitamin A) to 11-cis retinol in the retinal pigment epithelium (RPE) is a key step in the visual process for the regeneration of the visual pigment chromophore, 11-cis retinal. LRAT and RPE65 are recognized as the minimal isomerase catalytic components. However, regulators of this rate-limiting step are not fully identified and could account for the phenotypic variability associated with inherited retinal degeneration (RD) caused by mutations in the RPE65 gene. To identify new RPE65 partners, we screened a porcine RPE mRNA library using a yeast two-hybrid assay with full-length human RPE65. One identified clone (here named FATP1c), containing the cytosolic C-terminal sequence from the fatty acid transport protein 1 (FATP1 or SLC27A1, solute carrier family 27 member 1), was demonstrated to interact dose-dependently with the native RPE65 and with LRAT. Furthermore, these interacting proteins colocalize in the RPE. Cellular reconstitution of human interacting proteins shows that FATP1 markedly inhibits 11-cis retinol production by acting on the production of all-trans retinyl esters and the isomerase activity of RPE65. The identification of this new visual cycle inhibitory component in RPE may contribute to further understanding of retinal pathogenesis.


Assuntos
Aciltransferases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Vitamina A/antagonistas & inibidores , Animais , Glutationa Transferase/metabolismo , Humanos , Insetos , Camundongos , Fenótipo , Retina/metabolismo , Frações Subcelulares/metabolismo , Suínos , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Vitamina A/química , cis-trans-Isomerases
7.
Free Radic Biol Med ; 162: 367-382, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129975

RESUMO

Dry age-related macular degeneration and Stargardt disease undergo a known toxic mechanism caused by carbonyl and oxidative stresses (COS). This is responsible for accumulation in the retinal pigment epithelium (RPE) of A2E, a main toxic pyridinium bis-retinoid lipofuscin component. Previous studies have shown that carbonyl stress in retinal cells could be reduced by an alkyl-phloroglucinol-DHA conjugate (lipophenol). Here, we performed a rational design of different families of lipophenols to conserve anti-carbonyl stress activities and improve antioxidant properties. Five synthetic pathways leading to alkyl-(poly)phenol derivatives, with phloroglucinol, resveratrol, catechin and quercetin as the main backbone, linked to poly-unsaturated fatty acid, are presented. These lipophenols were evaluated in ARPE-19 cell line for their anti-COS properties and a structure-activity relationship study is proposed. Protection of ARPE-19 cells against A2E toxicity was assessed for the four best candidates. Finally, interesting anti-COS properties of the most promising quercetin lipophenol were confirmed in primary RPE cells.


Assuntos
Degeneração Macular , Humanos , Lipofuscina/metabolismo , Degeneração Macular/tratamento farmacológico , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/metabolismo
8.
BMJ Open Ophthalmol ; 5(1): e000462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426524

RESUMO

OBJECTIVES: No therapeutic interventions are currently available for autosomal dominant retinitis pigmentosa (adRP). An RPE65 Asp477Gly transition associates with late-onset adRP, reduced RPE65 enzymatic activity being one feature associated with this dominant variant. Our objective: to assess whether in a proof-of-concept study, oral synthetic 9 cis-retinyl acetate therapy improves vision in such advanced disease. METHODS AND ANALYSIS: A phase 1b proof-of-concept clinical trial was conducted involving five patients with advanced disease, aged 41-68 years. Goldmann visual fields (GVF) and visual acuities (VA) were assessed for 6-12 months after 7-day treatment, patients receiving consecutive oral doses (40 mg/m2) of 9-cis-retinyl acetate, a synthetic retinoid replacement. RESULTS: Pathological effects of D477G variant were preliminarily assessed by electroretinography in mice expressing AAV-delivered D477G RPE65, by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme- thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays on RPE viability and enzyme activity in cultured cells. In addition to a mild dominant effect reflected in reduced electroretinographics in mice, and reduced cellular function in vitro, D477G exhibited reduced enzymatic RPE65 activity in vitro. In patients, significant improvements were observed in GVF from baseline ranging from 70% to 200% in three of five subjects aged 67-68 years, with largest improvements at 7-10 months. Of two GVF non-responders, one had significant visual acuity improvement (5-15 letters) from baseline after 6 months. CONCLUSION: Families with D477G variant have been identified in Ireland, the UK, France, the USA and Canada. Effects of single 7-day oral retinoid supplementation lasted at least 6 months, possibly giving visual benefit throughout remaining life in patients with advanced disease, where gene therapy is unlikely to prove beneficial.

9.
Exp Mol Med ; 52(7): 1090-1101, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641711

RESUMO

Environmental light has deleterious effects on the outer retina in human retinopathies, such as ABCA4-related Stargardt's disease and dry age-related macular degeneration. These effects involve carbonyl and oxidative stress, which contribute to retinal cell death and vision loss. Here, we used an albino Abca4-/- mouse model, the outer retina of which shows susceptibility to acute photodamage, to test the protective efficacy of a new polyunsaturated fatty acid lipophenol derivative. Anatomical and functional analyses demonstrated that a single intravenous injection of isopropyl-phloroglucinol-DHA, termed IP-DHA, dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity. This protective effect persisted for 3 months. IP-DHA did not affect the kinetics of the visual cycle in vivo or the activity of the RPE65 isomerase in vitro. Moreover, IP-DHA administered by oral gavage showed significant protection of photoreceptors against acute light damage. In conclusion, short-term tests in Abca4-deficient mice, following single-dose administration and light exposure, identify IP-DHA as a therapeutic agent for the prevention of retinal degeneration.


Assuntos
Luz , Fenóis/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Eletrorretinografia , Cinética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenóis/química , Floroglucinol/farmacologia , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Doenças Retinianas/patologia , Retinoides/metabolismo , Tomografia de Coerência Óptica , cis-trans-Isomerases/metabolismo
10.
Antioxidants (Basel) ; 7(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572579

RESUMO

Age-related macular degeneration (AMD) is a multifactorial pathology and its progression is exacerbated by oxidative stress. Oxidation and photo-oxidation reactions modify lipids in retinal cells, contribute to tissue injury, and lead to the formation of toxic adducts. In particular, autofluorescent pigments such as N-retinylidene-N-retinylethanolamine (A2E) accumulate as lipofuscin in retinal pigment epithelial cells, contribute to the production of additional reactive oxygen species (ROS), and lead to cell degeneration. In an effort to develop efficient antioxidants to reduce damage caused by lipid oxidation, various natural polyphenols were structurally modified to increase their lipophilicity (lipophenols). In this study, resveratrol, phloroglucinol, quercetin and catechin were selected and conjugated to various polyunsaturated fatty acids (PUFAs) using classical chemical strategies or enzymatic reactions. After screening for cytotoxicity, the capacity of the synthesized lipophenols to reduce ROS production was evaluated in ARPE-19 cells subjected to H2O2 treatment using a dichlorofluorescein diacetate probe. The positions of the PUFA on the polyphenol core appear to influence the antioxidant effect. In addition, two lipophenolic quercetin derivatives were evaluated to highlight their potency in protecting ARPE-19 cells against A2E photo-oxidation toxicity. Quercetin conjugated to linoleic or α-linolenic acid were promising lipophilic antioxidants, as they protected ARPE-19 cells from A2E-induced cell death more effectively than the parent polyphenol, quercetin.

11.
PLoS One ; 12(7): e0180148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28672005

RESUMO

In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice). The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40%) of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.


Assuntos
Proteínas de Transporte de Ácido Graxo/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Retinoides/metabolismo , Animais , Eletrorretinografia , Humanos , Camundongos , Visão Ocular
12.
PLoS One ; 7(11): e50231, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166839

RESUMO

FATP1 is involved in lipid transport into cells and in intracellular lipid metabolism. We showed previously that this protein interacts with and inhibits the limiting-step isomerase of the visual cycle RPE65. Here, we aimed to analyze the effect of Fatp1-deficiency in vivo on the visual cycle, structure and function, and on retinal aging. Among the Fatp family members, we observed that only Fatp1 and 4 are expressed in the control retina, in both the neuroretina and the retinal pigment epithelium. In the neuroretina, Fatp1 is mostly expressed in photoreceptors. In young adult Fatp1(-/-) mice, Fatp4 expression was unchanged in retinal pigment epithelium and reduced two-fold in the neuroretina as compared to Fatp1(+/+) mice. The Fatp1(-/-) mice had a preserved retinal structure but a decreased electroretinogram response to light. These mice also displayed a delayed recovery of the b-wave amplitude after bleaching, however, visual cycle speed was unchanged, and both retinal pigment epithelium and photoreceptors presented the same fatty acid pattern compared to controls. In 2 year-old Fatp1(-/-) mice, transmission electron microscopy studies showed specific abnormalities in the retinas comprising choroid vascularization anomalies and thickening of the Bruch membrane with material deposits, and sometimes local disorganization of the photoreceptor outer segments. These anomalies lead us to speculate that the absence of FATP1 accelerates the aging process.


Assuntos
Envelhecimento/genética , Adaptação à Escuridão/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Luz , Retina/efeitos da radiação , Envelhecimento/fisiologia , Animais , Primers do DNA/genética , Adaptação à Escuridão/genética , Eletrorretinografia , Proteínas de Transporte de Ácido Graxo/deficiência , Ácidos Graxos/metabolismo , Fluorescência , Técnicas Histológicas , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Retina/metabolismo , Retina/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Rodopsina/metabolismo , Estatísticas não Paramétricas , cis-trans-Isomerases/metabolismo
13.
Curr Biol ; 21(20): 1720-6, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21982593

RESUMO

Tissue mechanics have been shown to play a key role in the regulation of morphogenesis in animals [1-4] and may have an equally important role in plants [5-9]. The aerial organs of plants are formed at the shoot apical meristem following a specific phyllotactic pattern [10]. The initiation of an organ from the meristem requires a highly localized irreversible surface deformation, which depends on the demethylesterification of cell wall pectins [11]. Here, we used atomic force microscopy (AFM) to investigate whether these chemical changes lead to changes in tissue mechanics. By mapping the viscoelasticity and elasticity in living meristems, we observed increases in tissue elasticity, correlated with pectin demethylesterification, in primordia and at the site of incipient organs. Measurements of tissue elasticity at various depths showed that, at the site of incipient primordia, the first increases occurred in subepidermal tissues. The results support the following causal sequence of events: (1) demethylesterification of pectin is triggered in subepidermal tissue layers, (2) this contributes to an increase in elasticity of these layers-the first observable mechanical event in organ initiation, and (3) the process propagates to the epidermis during the outgrowth of the organ.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/metabolismo , Meristema/citologia , Pectinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Elasticidade , Fenômenos Mecânicos , Meristema/metabolismo , Microscopia de Força Atômica , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo
14.
PLoS One ; 5(12): e14441, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203432

RESUMO

BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.


Assuntos
Linhagem da Célula , Mioblastos/citologia , Antígeno CD56/metabolismo , Comunicação Celular , Diferenciação Celular , Separação Celular , Células Cultivadas , Simulação por Computador , Metilação de DNA , Citometria de Fluxo , Humanos , Modelos Biológicos , Fenótipo , Processos Estocásticos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA