RESUMO
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, â¼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Doenças Vestibulares , Humanos , Anormalidades Múltiplas/genética , Doenças Vestibulares/genética , Deficiência Intelectual/genética , Face/anormalidades , Face/patologia , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Doenças Hematológicas/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Craniofaciais/genética , Cromossomos Humanos Par 9/genética , Criança , Metilação de DNA/genética , Pré-Escolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricose/genética , Mutação , Insuficiência de Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Cardiopatias CongênitasRESUMO
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.
Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Spliceossomos/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Síndrome , Malformações do Sistema Nervoso/genética , Perda de Heterozigosidade , FenótipoRESUMO
We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here, we provide new data on the clinical spectrum and molecular diversity of this disorder and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge toward an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene and definitively establish a gain-of-function behavior as the mechanism of disease.
Assuntos
Anormalidades Múltiplas , Peptídeos e Proteínas de Sinalização Intracelular , Síndrome dos Cabelos Anágenos Frouxos , Anormalidades Múltiplas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome dos Cabelos Anágenos Frouxos/genética , Fenótipo , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
Developmental abnormalities provide a unique opportunity to seek for the molecular mechanisms underlying human organogenesis. Esophageal development remains incompletely understood and elucidating causes for esophageal atresia (EA) in humans would contribute to achieve a better comprehension. Prenatal detection, syndromic classification, molecular diagnosis, and prognostic factors in EA are challenging. Some syndromes have been described to frequently include EA, such as CHARGE, EFTUD2-mandibulofacial dysostosis, Feingold syndrome, trisomy 18, and Fanconi anemia. However, no molecular diagnosis is made in most cases, including frequent associations, such as Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL). This study evaluates the clinical and genetic test results of 139 neonates and 9 fetuses followed-up at the Necker-Enfants Malades Hospital over a 10-years period. Overall, 52 cases were isolated EA (35%), and 96 were associated with other anomalies (65%). The latter group is divided into three subgroups: EA with a known genomic cause (9/148, 6%); EA with Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL) or VACTERL/Oculo-Auriculo-Vertebral Dysplasia (VACTERL/OAV) (22/148, 14%); EA with associated malformations including congenital heart defects, duodenal atresia, and diaphragmatic hernia without known associations or syndromes yet described (65/148, 44%). Altogether, the molecular diagnostic rate remains very low and may underlie frequent non-Mendelian genetic models.
Assuntos
Atresia Esofágica , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Fístula Traqueoesofágica , Recém-Nascido , Gravidez , Feminino , Humanos , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Estudos Retrospectivos , Fístula Traqueoesofágica/genética , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/complicações , Traqueia/anormalidades , Coluna Vertebral/anormalidades , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Rim/anormalidades , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5RESUMO
PURPOSE: Biallelic hypomorphic variants in PPA2, encoding the mitochondrial inorganic pyrophosphatase 2 protein, have been recently identified in individuals presenting with sudden cardiac death, occasionally triggered by alcohol intake or a viral infection. Here we report 20 new families harboring PPA2 variants. METHODS: Synthesis of clinical and molecular data concerning 34 individuals harboring five previously reported PPA2 variants and 12 novel variants, 11 of which were functionally characterized. RESULTS: Among the 34 individuals, only 6 remain alive. Twenty-three died before the age of 2 years while five died between 14 and 16 years. Within these 28 cases, 15 died of sudden cardiac arrest and 13 of acute heart failure. One case was diagnosed prenatally with cardiomyopathy. Four teenagers drank alcohol before sudden cardiac arrest. Progressive neurological signs were observed in 2/6 surviving individuals. For 11 variants, recombinant PPA2 enzyme activities were significantly decreased and sensitive to temperature, compared to wild-type PPA2 enzyme activity. CONCLUSION: We expand the clinical and mutational spectrum associated with PPA2 dysfunction. Heart failure and sudden cardiac arrest occur at various ages with inter- and intrafamilial phenotypic variability, and presentation can include progressive neurological disease. Alcohol intake can trigger cardiac arrest and should be strictly avoided.
Assuntos
Cardiomiopatias , Morte Súbita Cardíaca , Adolescente , Alelos , Cardiomiopatias/genética , Pré-Escolar , Morte Súbita Cardíaca/etiologia , Humanos , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Proteínas Mitocondriais/genética , MutaçãoRESUMO
INTRODUCTION: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS: Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS: We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION: This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos da Pigmentação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/patologia , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Mosaicismo , Patologia Molecular/normas , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Overlapping syndromes such as Noonan, Cardio-Facio-Cutaneous, Noonan syndrome (NS) with multiple lentigines and Costello syndromes are genetically heterogeneous conditions sharing a dysregulation of the RAS/mitogen-activated protein kinase (MAPK) pathway and are known collectively as the RASopathies. PTPN11 was the first disease-causing gene identified in NS and remains the more prevalent. We report seven patients from three families presenting heterozygous missense variants in PTPN11 probably responsible for a disease phenotype distinct from the classical Noonan syndrome. The clinical presentation and common features of these seven cases overlap with the SHORT syndrome. The latter is the consequence of PI3K/AKT signaling deregulation with the predominant disease-causing gene being PIK3R1. Our data suggest that the phenotypic spectrum associated with pathogenic variants of PTPN11 could be wider than previously described, and this could be due to the dual activity of SHP2 (ie, PTPN11 gene product) on the RAS/MAPK and PI3K/AKT signaling.
Assuntos
Variação Genética/genética , Transtornos do Crescimento/genética , Hipercalcemia/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genéticaRESUMO
More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature. We describe five patients with PDGFRB activating variants whose clinical features overlap multiple diagnostic entities. Seven additional patients from a large family had variable expressivity and late-onset disease, including adult onset features and two individuals with sudden death. Three patients were treated with imatinib and had robust and rapid response, including the first two reported infants with multicentric myofibromas treated with imatinib monotherapy and one with a recurrent p.Val665Ala (Penttinen) variant. Along with previously reported individuals, our cohort suggests infants and young children had few abnormal features, while older individuals had multiple additional features, several of which appeared to worsen with advancing age. Our analysis supports a diagnostic entity of a spectrum disorders due to activating variants in PDGFRB. Differences in reported phenotypes can be dramatic and correlate with advancing age, genotype, and to mosaicism in some individuals.
Assuntos
Mesilato de Imatinib/uso terapêutico , Leucoencefalopatias/etiologia , Miofibromatose/congênito , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Aneurisma/genética , Criança , Feminino , Estudos de Associação Genética , Humanos , Lactente , Leucoencefalopatias/tratamento farmacológico , Leucoencefalopatias/genética , Masculino , Miofibromatose/tratamento farmacológico , Miofibromatose/etiologia , Miofibromatose/genética , Linhagem , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Sudden unexpected death in infancy occurs in apparently healthy infants and remains largely unexplained despite thorough investigation. The vast majority of cases are sporadic. Here we report seven individuals from three families affected by sudden and unexpected cardiac arrest between 4 and 20 months of age. Whole-exome sequencing revealed compound heterozygous missense mutations in PPA2 in affected infants of each family. PPA2 encodes the mitochondrial pyrophosphatase, which hydrolyzes inorganic pyrophosphate into two phosphates. This is an essential activity for many biosynthetic reactions and for energy metabolism of the cell. We show that deletion of the orthologous gene in yeast (ppa2Δ) compromises cell viability due to the loss of mitochondria. Expression of wild-type human PPA2, but not PPA2 containing the mutations identified in affected individuals, preserves mitochondrial function in ppa2Δ yeast. Using a regulatable (doxycycline-repressible) gene expression system, we found that the pathogenic PPA2 mutations rapidly inactivate the mitochondrial energy transducing system and prevent the maintenance of a sufficient electrical potential across the inner membrane, which explains the subsequent disappearance of mitochondria from the mutant yeast cells. Altogether these data demonstrate that PPA2 is an essential gene in yeast and that biallelic mutations in PPA2 cause a mitochondrial disease leading to sudden cardiac arrest in infants.
Assuntos
Alelos , Morte Súbita Cardíaca/etiologia , Pirofosfatase Inorgânica/genética , Proteínas Mitocondriais/genética , Mutação/genética , Morte Súbita Cardíaca/patologia , Difosfatos , Exoma/genética , Feminino , Deleção de Genes , Genes Essenciais/genética , Teste de Complementação Genética , Heterozigoto , Humanos , Lactente , Pirofosfatase Inorgânica/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Viabilidade Microbiana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Bombas de Próton/deficiência , Bombas de Próton/genética , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The spectrum of clinical consequences of variants in the Platelet derived growth factor receptor beta (PDGFRB) gene is wide. Missense variants leading to variable loss of signal transduction in vitro have been reported in the idiopathic basal ganglia calcification (IBGC) syndrome Type 4. In contrast, gain-of-function variants have been reported in infantile myofibromatosis, Penttinen syndrome, and Kosaki overgrowth syndrome. Here, we report a patient harboring a novel postzygotic variant in PDGFRB (c.1682_1684del, p.[Arg561_Tyr562delinsHis]) and presenting severe cerebral malformations, intracerebral calcifications, and infantile myofibromatosis. This observation expands the phenotype associated with PDGFRB variants and illustrates the wide clinical spectrum linked to dysregulation of PDGFRB.
Assuntos
Encéfalo/anormalidades , Calcinose/genética , Miofibromatose/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido IncorretoRESUMO
Chromosome 7 germline macrodeletions have been implicated in human congenital malformations and developmental delays. We herein report a novel heterozygous macrodeletion of 7q34-q36.3 in a 16-year-old girl originally from West Indies. Similar to previously reported cases of germline chromosome 7q terminal deletions, our patient has dental malposition, and developmental (growth and intellectual) delay. Novel phenotypic features include endemic Kaposi sarcoma (KS), furrowed tongue, thoracolumbar scoliosis, and mild mitral valve dysplasia. The occurrence of human herpes virus 8-driven KS, in a child otherwise normally resistant to other infectious agents and without any other tumoral lesion, points to a very selective immunodeficiency. While defects in organogenesis have been described with such macrodeletions, this is the first report of immunodeficiency and cancer predisposition.
RESUMO
BACKGROUND: Corticotropin-independent macronodular adrenal hyperplasia may be an incidental finding or it may be identified during evaluation for Cushing's syndrome. Reports of familial cases and the involvement of both adrenal glands suggest a genetic origin of this condition. METHODS: We genotyped blood and tumor DNA obtained from 33 patients with corticotropin-independent macronodular adrenal hyperplasia (12 men and 21 women who were 30 to 73 years of age), using single-nucleotide polymorphism arrays, microsatellite markers, and whole-genome and Sanger sequencing. The effects of armadillo repeat containing 5 (ARMC5) inactivation and overexpression were tested in cell-culture models. RESULTS: The most frequent somatic chromosome alteration was loss of heterozygosity at 16p (in 8 of 33 patients for whom data were available [24%]). The most frequent mutation identified by means of whole-genome sequencing was in ARMC5, located at 16p11.2. ARMC5 mutations were detected in tumors obtained from 18 of 33 patients (55%). In all cases, both alleles of ARMC5 carried mutations: one germline and the other somatic. In 4 patients with a germline ARMC5 mutation, different nodules from the affected adrenals harbored different secondary ARMC5 alterations. Transcriptome-based classification of corticotropin-independent macronodular adrenal hyperplasia indicated that ARMC5 mutations influenced gene expression, since all cases with mutations clustered together. ARMC5 inactivation decreased steroidogenesis in vitro, and its overexpression altered cell survival. CONCLUSIONS: Some cases of corticotropin-independent macronodular adrenal hyperplasia appear to be genetic, most often with inactivating mutations of ARMC5, a putative tumor-suppressor gene. Genetic testing for this condition, which often has a long and insidious prediagnostic course, might result in earlier identification and better management. (Funded by Agence Nationale de la Recherche and others.).
Assuntos
Síndrome de Cushing/genética , Genes Supressores de Tumor , Proteínas Supressoras de Tumor , Glândulas Suprarrenais/patologia , Adulto , Idoso , Proteínas do Domínio Armadillo , Síndrome de Cushing/complicações , Síndrome de Cushing/patologia , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , TranscriptomaRESUMO
BACKGROUND: Germline non-polyalanine repeat expansion mutations in PHOX2B (PHOX2B NPARM) predispose to peripheral neuroblastic tumors (PNT), frequently in association with other neurocristopathies: Hirschsprung disease (HSCR) or congenital central hypoventilation syndrome (CCHS). Although PHOX2B polyalanine repeat expansions predispose to a low incidence of benign PNTs, the oncologic phenotype associated with PHOX2B NPARM is still not known in detail. METHODS: We analyzed prognostic factors, treatment toxicity, and outcome of patients with PNT and PHOX2B NPARM. RESULTS: Thirteen patients were identified, six of whom also had CCHS and/or HSCR, one also had late-onset hypoventilation with hypothalamic dysfunction (LO-CHS/HD), and six had no other neurocristopathy. Four tumours were "poorly differentiated," and nine were differentiated, including five ganglioneuromas, three ganglioneuroblastomas, and one differentiating neuroblastoma, hence illustrating that PHOX2B NPARM are predominantly associated with differentiating tumors. Nevertheless, three patients had stage 4 and one patient had stage 3 disease. Segmental chromosomal alterations, correlating with poor prognosis, were found in all the six tumors analyzed by array-comparative genomic hybridization. One patient died of tumor progression, one is on palliative care, one died of hypoventilation, and 10 patients are still alive, with median follow-up of 5 years. CONCLUSIONS: Based on histological phenotype, our series suggests that heterozygous PHOX2B NPARM do not fully preclude ganglion cell differentiation in tumors. However, this tumor predisposition syndrome may also be associated with poorly differentiated tumors with unfavorable genomic profiles and clinically aggressive behaviors. The intrafamilial variability and the unpredictable tumor prognosis should be considered in genetic counseling.
Assuntos
Proteínas de Homeodomínio/genética , Neuroblastoma/genética , Neoplasias do Sistema Nervoso Periférico/genética , Fatores de Transcrição/genética , Adulto , Causalidade , Criança , Pré-Escolar , Aberrações Cromossômicas , Expansão das Repetições de DNA , Ganglioneuroblastoma/genética , Ganglioneuroblastoma/patologia , Ganglioneuroma/patologia , Humanos , Doenças Hipotalâmicas/genética , Doenças Hipotalâmicas/patologia , Hipoventilação/congênito , Hipoventilação/genética , Hipoventilação/patologia , Lactente , Mutação , Neuroblastoma/patologia , Neuroblastoma/terapia , Hibridização de Ácido Nucleico , Neoplasias do Sistema Nervoso Periférico/patologia , Neoplasias do Sistema Nervoso Periférico/terapia , Fenótipo , Prognóstico , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/patologia , Resultado do TratamentoRESUMO
Neuroblastoma is the most frequent extra cranial solid tumor in infants and children. Genetic predisposition to neuroblastoma has been suspected previously due to familial cases of sporadic NB and predisposition to NB in several syndromes. Here, we report on a de novo 14q23.1-q23.3 microdeletion in a male presenting with a neuroblastoma diagnosed at 9 months, and spherocytosis, congenital heart defect, cryptorchidism, hypoplasia of corpus callosum, epilepsy, and developmental delay. Myc-associated-factor X (MAX) haploinsufficiency could be regarded as the predisposing factor to NB. Indeed 14q deletion is a recurrent somatic rearrangement in NB and MAX somatic and germline loss of function mutation have recently been described in pheochromocytoma and paraganglioma. However, MAX was expressed in the tumor of the patient we report on and, accordingly, loss of heterozygosity, mutation, or promoter methylation were excluded. In addition, we discuss the potential involvement in the clinical spectrum presented by the patient of five of the deleted genes, namely DAAM1, PLEKHG3, SPTB, AKAP5, and ARID4A.
Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 14 , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Hibridização Genômica Comparativa , Fácies , Humanos , Hibridização in Situ Fluorescente , Lactente , Cariotipagem , MasculinoRESUMO
Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.
Assuntos
Transtornos do Neurodesenvolvimento , Patologia Molecular , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Metilação de DNA , BiomarcadoresRESUMO
Transcription of mitochondrial DNA generates long polycistronic precursors whose nucleolytic cleavage yields the individual mtDNA-encoded transcripts. In most cases, this cleavage occurs at the 5'- and 3'-ends of tRNA sequences by the concerted action of RNAseP and RNaseZ/ELAC2 endonucleases, respectively. Variants in the ELAC2 gene have been predominantly linked to severe to mild cardiomyopathy that, in its milder forms, is accompanied by variably severe neurological presentations. Here, we report five patients from three unrelated families. Four of the patients presented mild to moderate cardiomyopathy and one died at 1 year of age, one patient had no evidence of cardiomyopathy. The patients had variable neurological presentations that included intellectual disability, ataxia, refractory epilepsy, neuropathy and deafness. All patients carried previously unreported missense and nonsense variants. Enzymatic analyses showed multiple OXPHOS deficiencies in biopsies from two patients, whereas immunoblot analyses revealed a decreased abundance of ELAC2 in fibroblasts from three patients. Northern blot analysis revealed an accumulation of unprocessed mt-tRNAVal-precursor consistent with the role of ELAC2 in transcript processing. Our study expands the genetic spectrum of ELAC2-linked disease and suggests that cardiomyopathy is not an invariably present clinical hallmark of this pathology.
RESUMO
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).
Assuntos
Epilepsia , Doenças Neurodegenerativas , Humanos , Proteínas Nucleares/genética , Epilepsia/genética , Fenótipo , Genótipo , Estudos de Associação Genética , Doenças Neurodegenerativas/genética , AtrofiaRESUMO
Highly identical segmental duplications (SDs) account for over 5% of the human genome and are enriched in the short arm of the chromosome 16. These SDs are susceptibility factors for recurrent chromosomal rearrangements mediated by non-allelic homologous recombination (NAHR). Chromosomal microarray analysis (CMA) has been widely used as the first-tier test for individuals with developmental disabilities and/or congenital anomalies and several genomic disorders involving the 16p-arm have been identified with this technique. However, the resolution of CMA and the limitations of short-reads whole genome sequencing (WGS) technology do not allow the full characterization of the most complex chromosomal rearrangements. Herein, we report on two unrelated patients with a de novo 16p13.11p11.2 triplication associated with a 16p11.2 duplication, detected by CMA. These patients share a similar phenotype including hypotonia, severe neurodevelopmental delay with profound speech impairment, hyperkinetic behavior, conductive hearing loss, and distinctive facial features. Short-reads WGS could not map precisely any of the rearrangement's breakpoints that lie within SDs. We used optical genome mapping (OGM) to determine the relative orientation of the triplicated and duplicated segments as well as the genomic positions of the breakpoints, allowing us to propose a mechanism involving recombination between allelic SDs and a NAHR event. In conclusion, we report a new clinically recognizable genomic disorder. In addition, the mechanism of these complex chromosomal rearrangements involving SDs could be unraveled by OGM.