Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(16): e202110855, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-34856047

RESUMO

Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.


Assuntos
Células Artificiais , Células Artificiais/química , Organelas/química , Biologia Sintética
2.
J Mater Chem B ; 12(12): 3047-3062, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38421173

RESUMO

Many efforts have been devoted to bone tissue to regenerate damaged tissues, and the development of new biocompatible materials that match the biological, mechanical, and chemical features required for this application is crucial. Herein, a collagen-decorated scaffold was prepared via electrospinning using a synthesized unsaturated copolyester (poly(globalide-co-pentadecalactone)), followed by two coupling reactions: thiol-ene functionalization with cysteine and further conjugation via EDC/NHS chemistry with collagen, aiming to design a bone tissue regeneration device with improved hydrophilicity and cell viability. Comonomer ratios were varied, affecting the copolymer's thermal and chemical properties and highlighting the tunable features of this copolyester. Functionalization with cysteine created new carboxyl and amine groups needed for bioconjugation with collagen, which is responsible for providing biological and structural integrity to the extra-cellular matrix. Bioconjugation with collagen turned the scaffold highly hydrophilic, decreasing its contact angle from 107 ± 2° to 0°, decreasing the copolymer crystallinity by 71%, and improving cell viability by 85% compared with the raw scaffold, thus promoting cell growth and proliferation. The highly efficient and biosafe strategy to conjugate polymers and proteins created a promising device for bone repair in tissue engineering.


Assuntos
Cisteína , Alicerces Teciduais , Alicerces Teciduais/química , Colágeno/química , Osso e Ossos , Regeneração Óssea , Polímeros
3.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986860

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have their use approved for the diagnosis/treatment of malignant tumors and can be metabolized by the organism. To prevent embolism caused by these nanoparticles, they need to be coated with biocompatible and non-cytotoxic materials. Here, we synthesized an unsaturated and biocompatible copolyester, poly (globalide-co-ε-caprolactone) (PGlCL), and modified it with the amino acid cysteine (Cys) via a thiol-ene reaction (PGlCLCys). The Cys-modified copolymer presented reduced crystallinity and increased hydrophilicity in comparison to PGlCL, thus being used for the coating of SPIONS (SPION@PGlCLCys). Additionally, cysteine pendant groups at the particle's surface allowed the direct conjugation of (bio)molecules that establish specific interactions with tumor cells (MDA-MB 231). The conjugation of either folic acid (FA) or the anti-cancer drug methotrexate (MTX) was carried out directly on the amine groups of cysteine molecules present in the SPION@PGlCLCys surface (SPION@PGlCLCys_FA and SPION@PGlCLCys_MTX) by carbodiimide-mediated coupling, leading to the formation of amide bonds, with conjugation efficiencies of 62% for FA and 60% for MTX. Then, the release of MTX from the nanoparticle surface was evaluated using a protease at 37 °C in phosphate buffer pH~5.3. It was found that 45% of MTX conjugated to the SPIONs were released after 72 h. Cell viability was measured by MTT assay, and after 72 h, 25% reduction in cell viability of tumor cells was observed. Thus, after a successful conjugation and subsequent triggered release of MTX, we understand that SPION@PGlCLCys has a strong potential to be treated as a model nanoplatform for the development of treatments and diagnosis techniques (or theranostic applications) that can be less aggressive to patients.

4.
ACS Appl Bio Mater ; 4(2): 1552-1562, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014505

RESUMO

Poly(ε-caprolactone) (PCL) is commonly used in devices for tissue reconstruction due to its biocompatibility and suitable mechanical properties. However, its high crystallinity and hydrophobicity do not favor cell adhesion and difficult polymer bioresorption. To improve these characteristics, the development of engineered scaffolds for tissue regeneration, based on poly(globalide-co-ε-caprolactone) (PGlCL) covalently bonded with N-acetylcysteine (PGlCL-NAC) was proposed. The scaffolds were obtained from polymer blends of PCL and PGlCL-NAC, using the electrospinning technique. The use of PGlCL-NAC allowed for the modification of the physical and chemical properties of PCL electrospun scaffolds, including an expressive reduction in the fiber's diameter, hydrophobicity, and crystallinity. All electrospun scaffolds showed no cytotoxicity against fibroblasts (McCoy cells). In vitro biocompatibility assays showed that all tested scaffolds provided high cell viability and proliferation in short-term (NRU, MTT, and nuclear morphology assays) and long-term (clonogenic assay) assays. Nevertheless, PGlCL-NAC based scaffolds have favored the survival and proliferation of the cells in comparison to PCL scaffolds. Cell adhesion on the scaffolds assessed by electronic microscopy images confirmed this behavior. These results suggest that the incorporation of PGlCL-NAC in scaffolds for tissue regeneration could be a promising strategy to improve cell-surface interactions and contribute to the development of more efficiently engineered biomedical devices.


Assuntos
Acetilcisteína/química , Caproatos/metabolismo , Fibroblastos/metabolismo , Lactonas/metabolismo , Poliésteres/química , Engenharia Tecidual/métodos
5.
J Nanosci Nanotechnol ; 21(11): 5493-5498, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980359

RESUMO

Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.


Assuntos
Nanopartículas , Soroalbumina Bovina , Ensaio de Imunoadsorção Enzimática , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Polimetil Metacrilato
6.
Mater Sci Eng C Mater Biol Appl ; 94: 477-483, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423732

RESUMO

N-Acetylcysteine (NAC) is a drug well known for its antimucolytic action, antioxidant activity and ability to protect cells from oxidative stress. Conjugation of NAC with double bonds in the main polymer chain of poly(globalide-co-ε-caprolactone) (PGlCL) through thiol-ene reaction is reported. Different globalide (Gl) (an unsaturated macrolactone) to ε-caprolactone (CL) ratios were employed for PGlCL synthesis. The polymeric materials (PGlCL-NAC) were evaluated in terms of the number of functionalized double bonds, thermal properties, affinity for water and antioxidant potential. PGlCL-NAC containing more globalide repeating units presented higher degree of functionalization, due to the higher number of double bonds available to react through thiol-ene coupling. For high globalide contents (Gl/CL ratios above 50/50), NAC coupling in PGlCL chains resulted in completely amorphous copolymers with a more hydrophilic character, which should enhance bioresorption and cell adhesion characteristics. Functionalization also gave rise to a thioether linkage, conferring to PGlCL-NAC an antioxidant character, important for biomedical applications, where the material could combat cellular oxidative-stress.


Assuntos
Acetilcisteína/química , Poliésteres/química , Compostos de Sulfidrila/química , Acetilcisteína/síntese química , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Picratos/química , Poliésteres/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Sulfônicos/química , Propriedades de Superfície
7.
Macromol Biosci ; 19(10): e1900145, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31490631

RESUMO

When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new "identity" and determine their biological fate. Protein-nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non-covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide-co-ε-caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol-ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol-ene reaction.


Assuntos
Caproatos/química , Lactonas/química , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Caproatos/farmacologia , Bovinos , Células HeLa , Humanos , Lactonas/farmacologia , Nanopartículas/ultraestrutura , Tamanho da Partícula , Soroalbumina Bovina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA