Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546275

RESUMO

Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.

2.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762598

RESUMO

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Assuntos
Células da Medula Óssea , Micropartículas Derivadas de Células , Senescência Celular/fisiologia , Hematopoese/fisiologia , Adulto , Idoso , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiologia , Feminino , Sangue Fetal/citologia , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Secretoma , Adulto Jovem
3.
Cell Death Dis ; 10(2): 59, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683851

RESUMO

Breast cancer (BC) cells (BCCs) can retain cellular quiescence for decades, a phenomenon referred to as dormancy. BCCs show preference for the bone marrow (BM) where they can remain dormant for decades. Targeting BCCs within the BM is a challenge since the dormant BCCs reside within BM stroma, also residence for hematopoietic stem cells (HSCs). Dormant BCCs could behave as cancer stem cells (CSCs). The CSCs and HSCs are similar by function and also, by commonly expressed genes. The method by which dormant BCCs transition into clinically metastatic cells remains unclear. This study tested the hypothesis that macrophages (MΦs) within BM stroma, facilitates dormancy or reverse this state into metastatic cells. MΦs exhibiting an M2 phenotype constitute ~10% of cultured BM stroma. The M2 MΦs form gap junctional intercellular communication (GJIC) with CSCs, resulting in cycling quiescence, reduced proliferation and carboplatin resistance. In contrast, MΦs expressing the M1 phenotype reversed BC dormancy. Activation of M2a MΦs via the toll-like receptor 4 (TLR4) switched to M1 phenotype. The switch can occur by direct activation of M2a MΦs, or indirectly through activation of mesenchymal stem cells. M1 MΦ-derived exosomes activated NFкB to reverse quiescent BCCs to cycling cells. Using an in vivo model of BC dormancy, injected Mi MOs sensitized BCCs to carboplatin and increased host survival. In summary, we have shown how BM stromal MΦs, through exosomes, regulate the behavior of BCCs, by either inducing or reversing dormancy.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Comunicação Celular , Exossomos/metabolismo , Macrófagos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Adolescente , Adulto , Animais , Neoplasias da Mama/tratamento farmacológico , Carboplatina/uso terapêutico , Células Cultivadas , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Feminino , Junções Comunicantes , Xenoenxertos , Humanos , Macrófagos/classificação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor 4 Toll-Like/metabolismo , Adulto Jovem
4.
Cancer Lett ; 380(1): 263-71, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-26546045

RESUMO

Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.


Assuntos
Células da Medula Óssea/patologia , Neoplasias da Medula Óssea/secundário , Neoplasias da Mama/patologia , Proliferação de Células , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias da Medula Óssea/tratamento farmacológico , Neoplasias da Medula Óssea/imunologia , Neoplasias da Medula Óssea/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Comunicação Celular , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
5.
Cancer Res ; 76(19): 5832-5844, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569215

RESUMO

Dormant breast cancers resurge as metastatic disease after a long dormancy period in the bone marrow, where cancer cells interact with mesenchymal stem cells (MSC). However, the nature of early interactions between breast cancer cells and MSCs in the bone marrow microenvironment that facilitate adaptation to a quiescent state remains poorly understood. Here, we report that breast cancer cells prime MSC to release exosomes containing distinct miRNA contents, such as miR-222/223, which in turn promotes quiescence in a subset of cancer cells and confers drug resistance. Building on these results, we developed a novel, nontoxic therapeutic strategy to target dormant breast cancer cells based on systemic administration of MSC loaded with antagomiR-222/223. In an immunodeficient mouse model of dormant breast cancer, this therapy sensitized breast cancer cells to carboplatin-based therapy and increased host survival. Overall, our findings illuminate the nature of the regulatory interactions between breast cancer cells and MSCs in the evolution of tumor dormancy and resurgence in the micrometastatic microenvironment of the bone marrow. Cancer Res; 76(19); 5832-44. ©2016 AACR.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Exossomos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , MicroRNAs/fisiologia
6.
Breast Cancer (Auckl) ; 9(Suppl 2): 57-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26792996

RESUMO

Despite substantial advances in early diagnosis, breast cancer (BC) still remains a clinical challenge. Most BC models use complex in vivo models and two-dimensional monolayer cultures that do not fully mimic the tumor microenvironment. The integration of cancer biology and engineering can lead to the development of novel in vitro approaches to study BC behavior and quantitatively assess different features of the tumor microenvironment that may influence cell behavior. In this review, we present tissue engineering approaches to model BC in vitro. Recent advances in the use of three-dimensional cell culture models to study various aspects of BC disease in vitro are described. The emerging area of studying BC dormancy using these models is also reviewed.

7.
PLoS One ; 10(3): e0118724, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837691

RESUMO

Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carboplatina/farmacologia , Técnicas de Cultura de Células/métodos , Engenharia Tecidual/métodos , Contagem de Células , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Alicerces Teciduais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA