Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pathophysiology ; 23(3): 229-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27524473

RESUMO

Chronic kidney disease (CKD) is associated with several other long-lasting conditions such as diabetes and cardiovascular diseases and it is a significant contributor to mortality worldwide. Obstructive kidney disease is one of the leading causes of CKD in children and may result from a wide variety of pathologic processes. Recent studies have shown that α7 nicotinic acetylcholine receptor (α7 nAChR) activation in the cholinergic anti-inflammatory pathway reduces production of inflammatory mediators and consequently prevents tissue injury and death. Here, we examined the role of endogenous release of acetylcholine on the development of fibrosis in renal tissue using a model of unilateral ureter obstruction (UUO)-induced CKD, in which obstruction promotes inflammation-mediated kidney damages. To interfere with acetylcholine secretion, we used mice in which the vesicular acetylcholine transporter is genetically reduced (VAChT KD(hom) mice). We observed a higher renal damage in VAChT mutant mice when compared to wild type controls, exemplified by higher proteinuria and increased amount of type 1 collagen in the kidney tissue, indicating accentuated fibrogenesis. These results were accompanied by enhanced localized kidney inflammation, with increased TH1/TH17 profile response. Administration of PNU-282987, a selective agonist of α7 nAChR, significantly attenuated kidney injury after UUO in VAChT KD(hom) mice, indicating that the lack of acetylcholine release decrease the action of the cholinergic anti-inflammatory pathway, promoting an up-regulation of pro-inflammatory and pro-fibrotic pathways. These results suggest that physiological activation of the cholinergic anti-inflammatory pathway regulates inflammatory responses in the kidney suggesting a new therapeutic approach for kidney disease.

2.
Mol Med ; 18: 1231-9, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22777483

RESUMO

Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4(+) T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (T(H)2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished T(H)2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10(+) and CD206(+) CD11b(high) cells, at 7 d after surgery. We evaluated the role of a T(H)2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-ß levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and T(H)1:T(H)2 balance, as T(H)2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.


Assuntos
Imunidade/imunologia , Rim/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/imunologia , Células Th2/imunologia , Animais , Citocinas/metabolismo , Fibrose , Hematopoese , Interleucina-12/metabolismo , Interleucina-4/deficiência , Rim/imunologia , Rim/fisiopatologia , Nefropatias/imunologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Testes de Função Renal , Ligadura , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Ureter/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA