Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 206, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443608

RESUMO

BACKGROUND: The plant homeodomain (PHD)-finger gene family that belongs to zinc-finger genes, plays an important role in epigenetics by regulating gene expression in eukaryotes. However, inaccurate annotation of PHD-finger genes hinders further downstream comparative, evolutionary, and functional studies. RESULTS: We performed genome-wide re-annotation in Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice), Capsicum annuum (pepper), Solanum tuberosum (potato), and Solanum lycopersicum (tomato) to better understand the role of PHD-finger genes in these species. Our investigation identified 875 PHD-finger genes, of which 225 (26% of total) were newly identified, including 57 (54%) novel PHD-finger genes in pepper. The PHD-finger genes of the five plant species have various integrated domains that may be responsible for the diversification of structures and functions of these genes. Evolutionary analyses suggest that PHD-finger genes were expanded recently by lineage-specific duplication, especially in pepper and potato, resulting in diverse repertoires of PHD-finger genes among the species. We validated the expression of six newly identified PHD-finger genes in pepper with qRT-PCR. Transcriptome analyses suggest potential functions of PHD-finger genes in response to various abiotic stresses in pepper. CONCLUSIONS: Our data, including the updated annotation of PHD-finger genes, provide useful information for further evolutionary and functional analyses to better understand the roles of the PHD-finger gene family in pepper.


Assuntos
Arabidopsis , Capsicum , Oryza , Solanum lycopersicum , Solanum tuberosum , Arabidopsis/genética , Capsicum/genética , Capsicum/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genômica , Solanum lycopersicum/genética , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
2.
Plant Biotechnol J ; 20(6): 1031-1041, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332665

RESUMO

Genome phasing is a recently developed assembly method that separates heterozygous eukaryotic genomic regions and builds haplotype-resolved assemblies. Because differences between haplotypes are ignored in most published de novo genomes, assemblies are available as consensus genomes consisting of haplotype mixtures, thus increasing the need for genome phasing. Here, we review the operating principles and characteristics of several freely available and widely used phasing tools (TrioCanu, FALCON-Phase, and ALLHiC). An examination of downstream analyses using haplotype-resolved genome assemblies in plants indicated significant differences among haplotypes regarding chromosomal rearrangements, sequence insertions, and expression of specific alleles that contribute to the acquisition of the biological characteristics of plant species. Finally, we suggest directions to solve addressing limitations of current genome-phasing methods. This review provides insights into the current progress, limitations, and future directions of de novo genome phasing, which will enable researchers to easily access and utilize genome-phasing in studies involving highly heterozygous complex plant genomes.


Assuntos
Genoma de Planta , Genômica , Alelos , Genoma de Planta/genética , Haplótipos/genética , Plantas/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA