Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Genet Sel Evol ; 55(1): 48, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460999

RESUMO

BACKGROUND: Genomic selection has increased genetic gain in dairy cattle, but in some cases it has resulted in higher inbreeding rates. Therefore, there is need for research on efficient management of inbreeding in genomically-selected dairy cattle populations, especially for local breeds with a small population size. Optimum contribution selection (OCS) minimizes the increase in average kinship while it maximizes genetic gain. However, there is no consensus on how to construct the kinship matrix used for OCS and whether it should be based on pedigree or genomic information. VanRaden's method 1 (VR1) is a genomic relationship matrix in which centered genotype scores are scaled with the sum of 2p(1-p) where p is the reference allele frequency at each locus, and VanRaden's method 2 (VR2) scales each locus with 2p(1-p), thereby giving greater weight to loci with a low minor allele frequency. We compared the effects of nine kinship matrices on genetic gain, kinship, inbreeding, genetic diversity, and minor allele frequency when applying OCS in a simulated small dairy cattle population. We used VR1 and VR2, each using base animals, all genotyped animals, and the current generation of animals to compute reference allele frequencies. We also set the reference allele frequencies to 0.5 for VR1 and the pedigree-based relationship matrix. We constrained OCS to select a fixed number of sires per generation for all scenarios. Efficiency of the different matrices were compared by calculating the rate of genetic gain for a given rate of increase in average kinship. RESULTS: We found that: (i) genomic relationships were more efficient than pedigree-based relationships at managing inbreeding, (ii) reference allele frequencies computed from base animals were more efficient compared to reference allele frequencies computed from recent animals, and (iii) VR1 was slightly more efficient than VR2, but the difference was not statistically significant. CONCLUSIONS: Using genomic relationships for OCS realizes more genetic gain for a given amount of kinship and inbreeding than using pedigree relationships when the number of sires is fixed. For a small genomic dairy cattle breeding program, we recommend that the implementation of OCS uses VR1 with reference allele frequencies estimated either from base animals or old genotyped animals.


Assuntos
Genômica , Endogamia , Animais , Bovinos/genética , Genótipo , Frequência do Gene , Linhagem , Alelos , Seleção Genética
2.
Anim Genet ; 54(4): 566-569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36971195

RESUMO

Cystinuria is a genetic disease that can lead to cystine urolith formation. The English bulldog is the dog breed most frequently affected. In this breed, three missense mutations have been suggested to be associated with cystinuria: c.568A>G and c.2086A>G in SLC3A1 and c.649G>A in SLC7A9. In this study, the occurrence of these three mutations in the Danish population of English bulldogs was investigated. Seventy-one English bulldogs were genotyped using TaqMan assays. The dogs' owners were given questionnaires concerning the medical histories of their dogs. Allele frequencies of 0.40, 0.40, and 0.52 were found for the mutant alleles in the three loci: c.568A>G, c.2086A>G, and c.649G>A, respectively. For both mutations in SLC3A1, a statistically significant association was found between cystinuria and homozygosity for the G allele among male, English bulldogs. For the mutation in SLC7A9, there was no statistically significant association between homozygosity for the mutant allele and cystinuria. Due to high allele frequencies, limited genetic diversity, continued uncertainty about the genetic background of cystinuria, and more severe health problems in the breed, selection based on genetic testing for the mutations in SLC3A1 cannot be recommended in the Danish population of English bulldogs. However, results of the genetic test may be used as a guide to recommend prophylactic treatment.


Assuntos
Cistinúria , Doenças do Cão , Cães , Masculino , Animais , Cistinúria/genética , Cistinúria/veterinária , Mutação , Genótipo , Testes Genéticos/veterinária , Dinamarca , Doenças do Cão/genética
3.
Genet Sel Evol ; 54(1): 70, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274137

RESUMO

BACKGROUND: Red dairy cattle breeds have an important role in the European dairy sector because of their functional characteristics and good health. Extensive pedigree information is available for these breeds and provides a unique opportunity to examine their population structure, such as effective population size, depth of the pedigree, and effective number of founders and ancestors, and inbreeding levels. Animals with the highest genetic contributions were identified. Pedigree data included 9,073,403 animals that were born between 1900 and 2019 from Denmark, Finland, Germany, Latvia, Lithuania, the Netherlands, Norway, Poland, and Sweden, and covered 32 breeds. The numerically largest breeds were Red Dairy Cattle and Meuse-Rhine-Yssel. RESULTS: The deepest average complete generation equivalent (9.39) was found for Red Dairy Cattle in 2017. Mean pedigree completeness ranged from 0.6 for Finncattle to 7.51 for Red Dairy Cattle. An effective population size of 166 animals was estimated for the total pedigree and ranged from 35 (Rotes Höhenvieh) to 226 (Red Dairy Cattle). Average generation intervals were between 5 and 7 years. The mean inbreeding coefficient for animals born between 1960 and 2018 was 1.5%, with the highest inbreeding coefficients observed for Traditional Angler (4.2%) and Rotes Höhenvieh (4.1%). The most influential animal was a Dutch Meuse-Rhine-Yssel bull born in 1960. The mean inbreeding level for animals born between 2016 and 2018 was 2% and highest for the Meuse-Rhine-Yssel (4.64%) and Rotes Hohenvieh breeds (3.80%). CONCLUSIONS: We provide the first detailed analysis of the genetic diversity and inbreeding levels of the European red dairy cattle breeds. Rotes Höhenvieh and Traditional Angler have high inbreeding levels and are either close to or below the minimal recommended effective population size, thus it is necessary to implement tools to monitor the selection process in order to control inbreeding in these breeds. Red Dairy Cattle, Vorderwälder, Swedish Polled and Hinterwälder hold more genetic diversity. Regarding the Meuse-Rhine-Yssel breed, given its decreased population size, increased inbreeding and low effective population size, we recommend implementation of a breeding program to prevent further loss in its genetic diversity.


Assuntos
Variação Genética , Endogamia , Bovinos/genética , Animais , Masculino , Linhagem , Densidade Demográfica , Registros
4.
Anim Genet ; 53(3): 427-435, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451516

RESUMO

Sequence variations in the melanocortin-1 receptor (MC1R) gene are associated with melanism in different animal species. Six functionally relevant alleles have been described in cattle to date. In a hypothesis-free approach we performed a genome-wide allelic association study with black, red and wild-coloured cattle of three Alpine cattle breeds (Eringer, Evolèner and Valdostana), revealing a single significant association signal close to the MC1R gene. We searched for candidate causative variants by sequencing the entire coding sequence and identified two novel protein-changing variants. We propose designating the mutant alleles at MC1R:c.424C>T as ev1 and at MC1R:c.263G>A as ev2 . Both affect conserved amino acid residues in functionally important transmembrane domains (p.Arg142Cys and p.Ser88Asn). Both alleles segregate predominantly in the Swiss Evolèner breed. They occur in other European cattle breeds such as Abondance and Rotes Höhenvieh as well. We observed almost perfect association between the MC1R genotypes and the coat colour phenotype in a cohort of 513 black, red and wild-coloured cattle. Animals carrying two copies of MC1R loss-of-function alleles or that were compound heterozygous for e, ev1 , or ev2 have a red to dark red (chestnut-like red) coat colour. These findings expand the spectrum of causal MC1R variants causing recessive red in cattle.


Assuntos
Cor de Cabelo , Receptor Tipo 1 de Melanocortina , Alelos , Animais , Cruzamento , Bovinos/genética , Genótipo , Cor de Cabelo/genética , Humanos , Fenótipo , Receptor Tipo 1 de Melanocortina/genética
5.
J Dairy Sci ; 105(2): 1298-1313, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955274

RESUMO

Fertility is an economically important trait in livestock. Poor fertility in dairy cattle can be due to loss-of-function variants affecting any essential gene that causes early embryonic mortality in homozygotes. To identify fertility-associated quantitative trait loci, we performed single-marker association analyses for 8 fertility traits in Holstein, Jersey, and Nordic Red Dairy cattle using imputed whole-genome sequence variants including SNPs, indels, and large deletion. We then performed stepwise selection of independent markers from GWAS loci using conditional and joint association analyses. From single-marker analyses for fertility traits, we reported genome-wide significant associations of 30,384 SNPs, 178 indels, and 3 deletions in Holstein; 23,481 SNPs, 189 indels, and 13 deletions in Nordic Red; and 17 SNPs in Jersey cattle. Conditional and joint association analyses identified 37 and 23 independent associations in Holstein and Nordic Red Dairy cattle, respectively. Fertility-associated GWAS loci were enriched for developmental and cellular processes (Gene Ontology enrichment, false discovery rate < 0.05). For these quantitative trait loci regions (top marker and 500 kb of surrounding regions), we proposed several candidate genes with functional annotations corresponding to embryonic lethality and various fertility-related phenotypes in mouse and cattle. The inclusion of these top markers in future releases of the custom SNP chip used for genomic evaluations will enable their validation in independent populations and improve the accuracy of genomic predictions.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
6.
Genet Sel Evol ; 53(1): 23, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676402

RESUMO

BACKGROUND: Local cattle breeds need special attention, as they are valuable reservoirs of genetic diversity. Appropriate breeding decisions and adequate genomic management of numerically smaller populations are required for their conservation. At this point, the analysis of dense genome-wide marker arrays provides encompassing insights into the genomic constitution of livestock populations. We have analyzed the genetic characterization of ten cattle breeds originating from Germany, The Netherlands and Denmark belonging to the group of red dairy breeds in Northern Europe. The results are intended to provide initial evidence on whether joint genomic breeding strategies of these populations will be successful. RESULTS: Traditional Danish Red and Groningen White-Headed were the most genetically differentiated breeds and their populations showed the highest levels of inbreeding. In contrast, close genetic relationships and shared ancestry were observed for the populations of German Red and White Dual-Purpose, Dutch Meuse-Rhine-Yssel, and Dutch Deep Red breeds, reflecting their common histories. A considerable amount of gene flow from Red Holstein to German Angler and to German Red and White Dual-Purpose was revealed, which is consistent with frequent crossbreeding to improve productivity of these local breeds. In Red Holstein, marked genomic signatures of selection were reported on chromosome 18, suggesting directed selection for important breeding goal traits. Furthermore, tests for signatures of selection between Red Holstein, Red and White Dual-Purpose, and Meuse-Rhine-Yssel uncovered signals for all investigated pairs of populations. The corresponding genomic regions, which were putatively under different selection pressures, harboured various genes which are associated with traits such as milk and beef production, mastitis and female fertility. CONCLUSIONS: This study provides comprehensive knowledge on the genetic constitution and genomic connectedness of divergent red cattle populations in Northern Europe. The results will help to design and optimize breeding strategies. A joint genomic evaluation including some of the breeds studied here seems feasible.


Assuntos
Bovinos/genética , Patrimônio Genético , Polimorfismo Genético , Seleção Artificial , Animais , Bovinos/fisiologia , Linhagem , Locos de Características Quantitativas , Característica Quantitativa Herdável
7.
PLoS Genet ; 14(10): e1007580, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312316

RESUMO

Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.


Assuntos
Bovinos/microbiologia , Metano/metabolismo , Microbiota/fisiologia , Leite/química , Rúmen/microbiologia , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos/classificação , Bovinos/genética , Feminino , Genoma/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Rúmen/metabolismo
8.
Genet Sel Evol ; 52(1): 19, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264818

RESUMO

BACKGROUND: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that affect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Effect-bearing variants often affect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic effects of variants in candidate genes. However, large sample sizes are required to achieve sufficient power. Multi-trait meta-analysis is one approach to deal with this problem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. RESULTS: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis compared with the subjective assessment of overlapping of single-trait QTL confidence intervals. Pleiotropic effects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confirmed by bivariate association analysis. The previously reported pleiotropic effects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic effects of variants in GHR on milk yield and fat yield were confirmed. Furthermore, our results suggested that variants in KCTD16, KCNK18 and ENSBTAG00000023629 had pleiotropic effects on milk production traits. For milk yield and mastitis resistance, we identified possible pleiotropic effects of variants in two genes, GC and DGAT1. CONCLUSIONS: Multi-trait meta-analysis improves our ability to detect pleiotropic interactions between milk production traits and identifies variants with pleiotropic effects on milk production traits and mastitis resistance. In particular, this should contribute to better understand the biological mechanisms that underlie the unfavorable genetic correlation between milk yield and mastitis.


Assuntos
Bovinos/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Lactação/genética , Mastite Bovina/prevenção & controle , Leite/metabolismo , Locos de Características Quantitativas/genética , Animais , Cruzamento , Mapeamento Cromossômico , Feminino , Genótipo , Mastite Bovina/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
Genet Sel Evol ; 52(1): 48, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32799816

RESUMO

BACKGROUND: Sequencing data enable the detection of causal loci or single nucleotide polymorphisms (SNPs) highly linked to causal loci to improve genomic prediction. However, until now, studies on integrating such SNPs using a single-step genomic best linear unbiased prediction (ssGBLUP) model are scarce. We investigated the integration of sequencing SNPs selected by association (1262 SNPs) and bioinformatics (2359 SNPs) analyses into the currently used 54K-SNP chip, using three ssGBLUP models which make different assumptions on the distribution of SNP effects: a basic ssGBLUP model, a so-called featured ssGBLUP (ssFGBLUP) model that considered selected sequencing SNPs as a feature genetic component, and a weighted ssGBLUP (ssWGBLUP) model in which the genomic relationship matrix was weighted by the SNP variances estimated from a Bayesian whole-genome regression model, with every 1, 30, or 100 adjacent SNPs within a chromosome region sharing the same variance. We used data on milk production and female fertility in Danish Jersey. In total, 15,823 genotyped and 528,981‬ non-genotyped females born between 1990 and 2013 were used as reference population and 7415 genotyped females and 33,040 non-genotyped females born between 2014 and 2016 were used as validation population. RESULTS: With basic ssGBLUP, integrating SNPs selected from sequencing data improved prediction reliabilities for milk and protein yields, but resulted in limited or no improvement for fat yield and female fertility. Model performances depended on the SNP set used. When using ssWGBLUP with the 54K SNPs, reliabilities for milk and protein yields improved by 0.028 for genotyped animals and by 0.006 for non-genotyped animals compared with ssGBLUP. However, with the SNP set that included SNPs selected from sequencing data, no statistically significant difference in prediction reliability was observed between the three ssGBLUP models. CONCLUSIONS: In summary, when using 54K SNPs, a ssWGBLUP model with a common weight on the SNPs in a given region is a feasible approach for single-trait genetic evaluation. Integrating relevant SNPs selected from sequencing data into the standard SNP chip can improve the reliability of genomic prediction. Based on such SNP data, a basic ssGBLUP model was suggested since no significant improvement was observed from using alternative models such as ssWGBLUP and ssFGBLUP.


Assuntos
Bovinos/genética , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Bovinos/fisiologia , Cromossomos/genética , Feminino , Fertilidade/genética , Lactação/genética , Leite/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos
10.
J Dairy Sci ; 103(5): 4570-4578, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197842

RESUMO

Haplotypes that are common in a population but not observed as homotypes in living animals may harbor lethal alleles that compromise embryo survival. In this study, we searched for homozygous-deficient haplotypes in the genomes of 19,309 Nordic Red Dairy (RDC) and 4,291 Danish Jersey (JER) cattle genotyped using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For statistically significant deficient haplotypes, we evaluated the effect on nonreturn rate in at-risk matings (mating between carrier bull and daughter of carrier sire) versus not-at-risk matings (mating between noncarrier bull and daughter of noncarrier sire). Next, we analyzed whole-genome sequence variants from the 1000 Bull Genomes Project to identify putative causal variants underlying these haplotypes. In RDC, we identified 3 homozygous-deficient regions (HDR) that overlapped with known recessive lethal mutations: a 662-kb deletion on chromosome 12 in RDC [Online Mendelian Inheritance in Animals (OMIA) 001901-9913), a missense mutation in TUBD1, g.11063520T>C, in Braunvieh cattle (OMIA 001939-9913), and a 525-kb deletion on chromosome 23 in RDC (OMIA 001991-9913)]. In addition, we identified 15 novel HDR and their tag haplotypes for the underlying causative variants. The tag haplotype located between 39.2 and 40.3 Mbp on chromosome 18 had a negative effect on nonreturn rate in at-risk mating, confirming embryonic lethality. In Danish Jersey, we identified 12 novel HDR and their tag haplotypes for underlying causative variants. For 3 of these 12 tag haplotypes, insemination records of at-risk mating showed a negative effect on nonreturn rate, confirming the association with early embryonic mortality. Cattle that had both genotype and whole-genome sequence data were analyzed to detect the causative variants underlying each tag haplotype. However, none of the functional variants or deletions showed concordance with carrier status of the novel tag haplotypes. Carrier status of these detected haplotypes can be used to select bulls to reduce the frequencies of lethal alleles in the population and to avoid at-risk matings.


Assuntos
Bovinos , Morte Fetal , Genoma , Haplótipos , Animais , Cruzamento , Dinamarca , Feminino , Genótipo , Homozigoto , Masculino , Mutação , Mutação de Sentido Incorreto , Gravidez
11.
BMC Genomics ; 20(1): 255, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30935378

RESUMO

BACKGROUND: An unfavorable genetic correlation between milk production and fertility makes simultaneous improvement of milk production and fertility difficult in cattle breeding. Rapid genetic improvement in milk production traits in dairy cattle has been accompanied by decline in cow fertility. The genetic basis of this correlation remains poorly understood. Expanded reference populations and large sets of sequenced animals make genome-wide association studies (GWAS) with imputed markers possible for large populations and thereby studying genetic architecture of complex traits. RESULTS: In this study, we associated 15,551,021 SNPs with female fertility index in 5038 Nordic Holstein cattle. We have identified seven quantitative trait loci (QTL) on six chromosomes in cattle. Along with nearest genes to GWAS hits, we used gene-based analysis and spread of linkage disequilibrium (LD) information to generate a list of potential candidate genes affecting fertility in cattle. Subsequently, we used prior knowledge on gene related to fertility from Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathway analysis, mammalian phenotype database, and public available RNA-seq data to refine the list of candidate genes for fertility. We used variant annotations to investigate candidate mutations within the prioritized candidate genes. Using multiple source of information, we proposed candidate genes with biological relevance underlying each of these seven QTL. On chromosome 1, we have identified ten candidate genes for two QTL. For the rest of chromosomes, we proposed one candidate gene for each QTL. In the candidate genes list, differentially expressed genes from different studies support FRAS1, ITGB5, ADCY5, and SEMA5B as candidate genes for cow fertility. CONCLUSION: The GWAS result not only confirmed previously mapped QTL, but also made new findings. Our findings contributes towards dissecting the genetics for female fertility in cattle. Moreover, this study shows the usefulness of adding independent information to pick candidate genes during post-GWAS analysis.


Assuntos
Fertilidade/genética , Adenilil Ciclases/genética , Animais , Bovinos , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Semaforinas/genética
12.
BMC Genomics ; 20(1): 617, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357931

RESUMO

BACKGROUND: Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n = 58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and information on its genomic architecture is scanty so far. We trust that availability of its whole genome sequence data and assembly will greatly solve this problem and help to generate many information including phylogenetic status of mithun. Recently, the first genome assembly of gayal, mithun of Chinese origin, was published. However, an improved reference genome assembly would still benefit in understanding genetic variation in mithun populations reared under diverse geographical locations and for building a superior consensus assembly. We, therefore, performed deep sequencing of the genome of an adult female mithun from India, assembled and annotated its genome and performed extensive bioinformatic analyses to produce a superior de novo genome assembly of mithun. RESULTS: We generated ≈300 Gigabyte (Gb) raw reads from whole-genome deep sequencing platforms and assembled the sequence data using a hybrid assembly strategy to create a high quality de novo assembly of mithun with 96% recovered as per BUSCO analysis. The final genome assembly has a total length of 3.0 Gb, contains 5,015 scaffolds with an N50 value of 1 Mb. Repeat sequences constitute around 43.66% of the assembly. The genomic alignments between mithun to cattle showed that their genomes, as expected, are highly conserved. Gene annotation identified 28,044 protein-coding genes presented in mithun genome. The gene orthologous groups of mithun showed a high degree of similarity in comparison with other species, while fewer mithun specific coding sequences were found compared to those in cattle. CONCLUSION: Here we presented the first de novo draft genome assembly of Indian mithun having better coverage, less fragmented, better annotated, and constitutes a reasonably complete assembly compared to the previously published gayal genome. This comprehensive assembly unravelled the genomic architecture of mithun to a great extent and will provide a reference genome assembly to research community to elucidate the evolutionary history of mithun across its distinct geographical locations.


Assuntos
Genômica , Ruminantes/genética , Sequenciamento Completo do Genoma , Animais , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico/genética
13.
BMC Genomics ; 20(1): 286, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975085

RESUMO

BACKGROUND: Cattle populations are highly amenable to the genetic mapping of male reproductive traits because longitudinal data on ejaculate quality and dense microarray-derived genotypes are available for thousands of artificial insemination bulls. Two young Nordic Red bulls delivered sperm with low progressive motility (i.e., asthenospermia) during a semen collection period of more than four months. The bulls were related through a common ancestor on both their paternal and maternal ancestry. Thus, a recessive mode of inheritance of asthenospermia was suspected. RESULTS: Both bulls were genotyped at 54,001 SNPs using the Illumina BovineSNP50 Bead chip. A scan for autozygosity revealed that they were identical by descent for a 2.98 Mb segment located on bovine chromosome 25. This haplotype was not found in the homozygous state in 8557 fertile bulls although five homozygous haplotype carriers were expected (P = 0.018). Whole genome-sequencing uncovered that both asthenospermic bulls were homozygous for a mutation that disrupts a canonical 5' splice donor site of CCDC189 encoding the coiled-coil domain containing protein 189. Transcription analysis showed that the derived allele activates a cryptic splice site resulting in a frameshift and premature termination of translation. The mutated CCDC189 protein is truncated by more than 40%, thus lacking the flagellar C1a complex subunit C1a-32 that is supposed to modulate the physiological movement of the sperm flagella. The mutant allele occurs at a frequency of 2.5% in Nordic Red cattle. CONCLUSIONS: Our study in cattle uncovered that CCDC189 is required for physiological movement of sperm flagella thus enabling active progression of spermatozoa and fertilization. A direct gene test may be implemented to monitor the asthenospermia-associated allele and prevent the birth of homozygous bulls that are infertile. Our results have been integrated in the Online Mendelian Inheritance in Animals (OMIA) database ( https://omia.org/OMIA002167/9913/ ).


Assuntos
Indústria de Laticínios , Infertilidade Masculina/genética , Animais , Bovinos , Cromossomos de Mamíferos/genética , Genótipo , Homozigoto , Masculino , Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética
14.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643236

RESUMO

Viral hemorrhagic septicemia virus (VHSV), a rhabdovirus infecting teleost fish, has repeatedly crossed the boundary from marine fish species to freshwater cultured rainbow trout. These naturally replicated cross-species transmission events permit the study of general and repeatable evolutionary events occurring in connection with viral emergence in a novel host species. The purpose of the present study was to investigate the adaptive molecular evolution of the VHSV glycoprotein, one of the key virus proteins involved in viral emergence, following emergence from marine species into freshwater cultured rainbow trout. A comprehensive phylogenetic reconstruction of the complete coding region of the VHSV glycoprotein was conducted, and adaptive molecular evolution was investigated using a maximum likelihood approach to compare different codon substitution models allowing for heterogeneous substitution rate ratios among amino acid sites. Evidence of positive selection was detected at six amino acid sites of the VHSV glycoprotein, within the signal peptide, the confirmation-dependent major neutralizing epitope, and the intracellular tail. Evidence of positive selection was found exclusively in rainbow trout-adapted virus isolates, and amino acid combinations found at the six sites under positive selection pressure differentiated rainbow trout- from non-rainbow trout-adapted isolates. Furthermore, four adaptive sites revealed signs of recurring identical changes across phylogenetic groups of rainbow trout-adapted isolates, suggesting that repeated VHSV emergence in freshwater cultured rainbow trout was established through convergent routes of evolution that are associated with immune escape.IMPORTANCE This study is the first to demonstrate that VHSV emergence from marine species into freshwater cultured rainbow trout has been accompanied by bursts of adaptive evolution in the VHSV glycoprotein. Furthermore, repeated detection of the same adaptive amino acid sites across phylogenetic groups of rainbow trout-adapted isolates indicates that adaptation to rainbow trout was established through parallel evolution. In addition, signals of convergent evolution toward the maintenance of genetic variation were detected in the conformation-dependent neutralizing epitope or in close proximity to disulfide bonds involved in the structural conformation of the neutralizing epitope, indicating adaptation to immune response-related genetic variation across freshwater cultured rainbow trout.


Assuntos
Doenças dos Peixes/transmissão , Glicoproteínas/genética , Septicemia Hemorrágica Viral/transmissão , Novirhabdovirus/genética , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/veterinária , Adaptação Biológica/genética , Substituição de Aminoácidos/genética , Animais , Evolução Molecular , Doenças dos Peixes/virologia , Septicemia Hemorrágica Viral/virologia , Novirhabdovirus/patogenicidade , Infecções por Rhabdoviridae/transmissão , Infecções por Rhabdoviridae/virologia , Especificidade da Espécie
15.
BMC Genet ; 20(1): 15, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696404

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have been successfully implemented in cattle research and breeding. However, moving from the associations to identify the causal variants and reveal underlying mechanisms have proven complicated. In dairy cattle populations, we face a challenge due to long-range linkage disequilibrium (LD) arising from close familial relationships in the studied individuals. Long range LD makes it difficult to distinguish if one or multiple quantitative trait loci (QTL) are segregating in a genomic region showing association with a phenotype. We had two objectives in this study: 1) to distinguish between multiple QTL segregating in a genomic region, and 2) use of external information to prioritize candidate genes for a QTL along with the candidate variants. RESULTS: We observed fixing the lead SNP as a covariate can help to distinguish additional close association signal(s). Thereafter, using the mammalian phenotype database, we successfully found candidate genes, in concordance with previous studies, demonstrating the power of this strategy. Secondly, we used variant annotation information to search for causative variants in our candidate genes. The variant information successfully identified known causal mutations and showed the potential to pinpoint the causative mutation(s) which are located in coding regions. CONCLUSIONS: Our approach can distinguish multiple QTL segregating on the same chromosome in a single analysis without manual input. Moreover, utilizing information from the mammalian phenotype database and variant effect predictor as post-GWAS analysis could benefit in candidate genes and causative mutations finding in cattle. Our study not only identified additional candidate genes for milk traits, but also can serve as a routine method for GWAS in dairy cattle.


Assuntos
Indústria de Laticínios , Bases de Dados Genéticas , Fenótipo , Animais , Bovinos , Desequilíbrio de Ligação , Leite/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
16.
PLoS Biol ; 14(7): e1002523, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467395

RESUMO

In the past decade, biobanking has fuelled great scientific advances in the human medical sector. Well-established domesticated animal biobanks and integrated networks likewise harbour immense potential for great scientific advances with broad societal impacts, which are currently not being fully realised. Political and scientific leaders as well as journals and ethics committees should help to ensure that we are well equipped to meet future demands in livestock production, animal models, and veterinary care of companion animals.


Assuntos
Animais Domésticos , Bancos de Espécimes Biológicos/estatística & dados numéricos , Pesquisa Biomédica/métodos , Medicina Veterinária/métodos , Animais , Bancos de Espécimes Biológicos/tendências , Pesquisa Biomédica/tendências , Humanos , Legislação Veterinária/tendências , Medicina Veterinária/tendências
17.
Genet Sel Evol ; 51(1): 20, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077144

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are widely used to identify regions of the genome that harbor genetic determinants of quantitative traits. However, the multiple-testing burden from scanning tens of millions of whole-genome sequence variants reduces the power to identify associated variants, especially if sample size is limited. In addition, factors such as inaccuracy of imputation, complex linkage disequilibrium structures, and multiple closely-located causal variants may result in an identified causative mutation not being the most significant single nucleotide polymorphism in a particular genomic region. Therefore, the use of information from different sources, particularly variant annotations, was proposed to enhance the fine-mapping of causal variants. Here, we tested whether applying significance thresholds based on variant annotation categories increases the power of GWAS compared with a flat Bonferroni multiple-testing correction. RESULTS: Whole-genome sequence variants in dairy cattle were categorized according to type and predicted impact. Then, GWAS between markers and 17 quantitative traits were analyzed for enrichment for association of each annotation category. By using annotation categories that were determined with the variants effect predictor software and datasets indicating regions of open chromatin, "low impact" variants were found to be highly enriched. Moreover, when the variants annotated as "modifier" and not located at open chromatin regions were further classified into different types of potential regulatory elements, the high impact variants, moderate impact variants, variants located in the 3' and 5' untranslated regions, and variants located in potential non-coding RNA regions exhibited relatively more enrichment. In contrast, a similar study on human GWAS data reported that enrichment of association signals was highest with high impact variants. We observed an increase in power when these variant category-based significance thresholds were applied for GWAS results on stature in Nordic Holstein cattle, as more candidate genes from previous large GWAS meta-analysis for cattle stature were confirmed. CONCLUSIONS: Use of variant category-based genome-wide significance thresholds can marginally increase the power to detect the candidate genes in cattle. With the continued improvements in annotation of the bovine genome, we anticipate that the growing usefulness of variant category-based significance thresholds will be demonstrated.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético , Animais , Estudo de Associação Genômica Ampla/normas , Anotação de Sequência Molecular , Locos de Características Quantitativas
18.
J Dairy Sci ; 102(12): 11193-11206, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31606212

RESUMO

Genotype imputation, often focused on SNP and small insertions and deletions (indels; size ≤50 bp), is a crucial step for association mapping and estimation of genomic breeding values. Here, we present strategies to impute genotypes for large chromosomal deletions (size >50 bp), along with SNP and indels in cattle. The pipelines include a strategy for extending the whole-genome sequence reference panel for large deletions, a 2-step genotype refinement approach using Beagle4 and SHAPEIT2 software, and finally, joint imputation of SNP, indels, and large deletions to the existing SNP array-typed population using Minimac3 software. Using these pipelines we achieved an imputation accuracy of the squared Pearson correlation (r2) > 0.6 at minor allele frequencies as low as 0.7% for SNP and indels, and 0.2% for large deletions. This highlights the potential of our approach to build a haplotype reference panel and impute different classes of sequence variants across a wide allele frequency spectrum with high accuracy.


Assuntos
Bovinos/genética , Deleção Cromossômica , Variação Genética , Sequenciamento Completo do Genoma/veterinária , Animais , Cruzamento , Frequência do Gene , Genoma , Técnicas de Genotipagem/veterinária , Haplótipos , Polimorfismo de Nucleotídeo Único , Software
19.
J Dairy Sci ; 102(12): 11116-11123, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31548059

RESUMO

Widespread use of a limited number of elite sires in dairy cattle breeding increases the risk of some deleterious allelic variants spreading in the population. Genomic data are being used to detect relatively common (frequency >1%) haplotypes that never occur in the homozygous state in live animals. Such haplotypes likely include recessive lethal or semilethal alleles. The aim of this study was to detect such haplotypes in the Nordic Holstein population and to identify causal genetic factors underlying these haplotypes. Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) genotypes for 26,312 Nordic Holstein animals were phased to construct haplotypes. Haplotypes that are common in the population but never observed as homozygous were identified. Two such haplotypes overlapped with previously identified recessive lethal mutations in Holsteins-namely, structural maintenance of chromosomes 2 (HH3) and brachyspina. In addition, we identified 9 novel putative recessive lethal-carrying haplotypes, with 26 to 36 homozygous individuals expected among the genotyped animals but only 0 to 3 homozygotes observed. For 2 out of 9 homozygous-deficient haplotypes, insemination records of at-risk mating (carrier bull with daughter of carrier sire) showed reduced insemination success compared with not-at-risk mating (noncarrier bull with daughter of noncarrier sire), supporting early embryonic mortality. To detect the causative variant underlying each homozygous-deficient haplotype, data from the 1000 Bull Genome Project were used. However, no variants or deletions identified in the chromosome regions covered by the haplotypes showed concordance with haplotype carrier status. The carrier status of detected haplotypes could be used to select bulls to reduce the frequency of the latent lethal mutations in the population. If desired, at-risk matings could be avoided.


Assuntos
Bovinos/genética , Perda do Embrião/genética , Genes Letais , Haplótipos , Mutação , Alelos , Animais , Cruzamento , Feminino , Genes Recessivos , Genótipo , Homozigoto , Masculino
20.
BMC Genomics ; 19(1): 656, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189836

RESUMO

BACKGROUND: Improving resistance to mastitis, one of the costliest diseases in dairy production, has become an important objective in dairy cattle breeding. However, mastitis resistance is influenced by many genes involved in multiple processes, including the response to infection, inflammation, and post-infection healing. Low genetic heritability, environmental variations, and farm management differences further complicate the identification of links between genetic variants and mastitis resistance. Consequently, studies of the genetics of variation in mastitis resistance in dairy cattle lack agreement about the responsible genes. RESULTS: We associated 15,552,968 imputed whole-genome sequencing markers for 5147 Nordic Holstein cattle with mastitis resistance in a genome-wide association study (GWAS). Next, we augmented P-values for markers in genes in the associated regions using Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and mammalian phenotype database. To confirm results of gene-based analyses, we used gene expression data from E. coli-challenged cow udders. We identified 22 independent quantitative trait loci (QTL) that collectively explained 14% of the variance in breeding values for resistance to clinical mastitis (CM). Using association test statistics with multiple pieces of independent information on gene function and differential expression during bacterial infection, we suggested putative causal genes with biological relevance for 12 QTL affecting resistance to CM in dairy cattle. CONCLUSION: Combining information on the nearest positional genes, gene-based analyses, and differential gene expression data from RNA-seq, we identified putative causal genes (candidate genes with biological evidence) in QTL for mastitis resistance in Nordic Holstein cattle. The same strategy can be applied for other traits.


Assuntos
Indústria de Laticínios , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Mastite Bovina/genética , Mastite Bovina/imunologia , Animais , Bovinos , Mutação , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA