Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 2027-2042, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38534747

RESUMO

Glucose is a major energy substrate for porcine adipocytes and also serves as a regulatory signal for adipogenesis and lipid metabolism. In this study, we combined transcriptome and metabolome analyses to reveal the underlying regulatory mechanisms of high glucose (HG) on adipogenesis by comparing differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) identified in porcine adipocytes. Results showed that HG (20 mmol/L) significantly increased fat accumulation in porcine adipocytes compared to low glucose (LG, 5 mmol/L). A total of 843 DEGs and 365 DAMs were identified. Functional enrichment analyses of DEGs found that multiple pathways were related to adipogenesis, lipid metabolism, and immune-inflammatory responses. PPARγ, C/EBPα, ChREBP, and FOS were identified as the key hub genes through module 3 analysis, and PPARγ acted as a central regulator by linking genes involved in lipid metabolism and immune-inflammatory responses. Gene-metabolite networks found that PPARγ-13-HODE was the most important interaction relationship. These results revealed that PPARγ could mediate the cross-talk between adipogenesis and the immune-inflammatory response during adipocyte maturation. This work provides a comprehensive view of the regulatory mechanisms of glucose on adipogenesis in porcine adipocytes.

2.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747479

RESUMO

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/metabolismo , Testosterona/metabolismo , Suínos , Testículo/citologia , Células Cultivadas , Técnicas de Cultura de Células/veterinária , Separação Celular/métodos , Separação Celular/veterinária
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203844

RESUMO

Breast milk, an indispensable source of immunological and nutrient components, is essential for the growth and development of newborn mammals. MicroRNAs (miRNAs) are present in various tissues and body fluids and are selectively packaged inside exosomes, a type of membrane vesicle. Milk exosomes have potential regulatory effects on the growth, development, and immunity of newborn piglets. To explore the differences in milk exosomes related to the breed and milk type, we isolated exosomes from colostrum and mature milk from domestic Bamei pigs and foreign Landrace pigs by using density gradient centrifugation and then characterized them by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Furthermore, the profiles and functions of miRNAs in the two types of pig milk exosomes were investigated using miRNA-seq and bioinformatics analysis. We identified a total of 1081 known and 2311 novel miRNAs in pig milk exosomes from Bamei and Landrace pigs. These differentially expressed miRNAs (DE-miRNAs) are closely associated with processes such as cell signaling, cell physiology, and immune system development. Functional enrichment analysis showed that DE-miRNA target genes were significantly enriched in endocytosis, the T cell receptor signaling pathway, and the Th17 cell differentiation signaling pathway. The exosomal miRNAs in both the colostrum and mature milk of the two pig species showed significant differences. Based on related signaling pathways, we found that the colostrum of local pig breeds contained more immune-system-development-related miRNAs. This study provides new insights into the possible function of milk exosomal miRNAs in the development of the piglet immune system.


Assuntos
Líquidos Corporais , Exossomos , MicroRNAs , Humanos , Feminino , Gravidez , Animais , Suínos , Colostro , Exossomos/genética , MicroRNAs/genética , Leite Humano , Sus scrofa
4.
BMC Genomics ; 24(1): 16, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635624

RESUMO

BACKGROUND: As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS: We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION: In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.


Assuntos
Toxinas Bacterianas , Calgranulina B , Intestinos , Animais , Clostridium perfringens , Diarreia , Células Epiteliais/metabolismo , Receptores CCR7/metabolismo , Suínos , Calgranulina B/metabolismo , Toxinas Bacterianas/efeitos adversos , Inflamação
5.
Curr Issues Mol Biol ; 45(3): 2309-2325, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36975519

RESUMO

LncRNAs play important roles in resisting bacterial infection via host immune and inflammation responses. Clostridium perfringens (C. perfringens) type C is one of the main bacteria causing piglet diarrhea diseases, leading to major economic losses in the pig industry worldwide. In our previous studies, piglets resistant (SR) and susceptible (SS) to C. perfringens type C were identified based on differences in host immune capacity and total diarrhea scores. In this paper, the RNA-Seq data of the spleen were comprehensively reanalyzed to investigate antagonistic lncRNAs. Thus, 14 lncRNAs and 89 mRNAs were differentially expressed (DE) between the SR and SS groups compared to the control (SC) group. GO term enrichment, KEGG pathway enrichment and lncRNA-mRNA interactions were analyzed to identify four key lncRNA targeted genes via MAPK and NF-κB pathways to regulate cytokine genes (such as TNF-α and IL-6) against C. perfringens type C infection. The RT-qPCR results for six selected DE lncRNAs and mRNAs are consistent with the RNA-Seq data. This study analyzed the expression profiling of lncRNAs in the spleen of antagonistic and sensitive piglets and found four key lncRNAs against C. perfringens type C infection. The identification of antagonistic lncRNAs can facilitate investigations into the molecular mechanisms underlying resistance to diarrhea in piglets.

6.
Curr Issues Mol Biol ; 45(4): 3193-3207, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37185732

RESUMO

Clostridium perfringens (C. perfringens) type C is one of the common bacteria in piglet diarrhea, which seriously affects the swine industry's development. The spleen plays crucial roles in the resistance and elimination of pathogenic microorganisms, and miRNAs play important roles in regulating piglet diarrhea caused by pathogens. However, the mechanism by which miRNAs in the spleen are involved in regulating C. perfringens type C causing diarrhea in piglets remains unclear. The expression profiles of the spleen miRNAs of 7-day-old piglets challenged by C. perfringens type C were studied using small RNA-sequencing in control (SC), susceptible (SS), and resistant (SR) groups. Eight-eight differentially expressed miRNAs were screened. The KEGG pathway analysis of target genes revealed that the miRNAs were involved in the MAPK, p53, and ECM-receptor interaction signaling pathways. NFATC4 was determined to be a direct target of miR-532-3p and miR-133b using a dual-luciferase reporter assay. Thus, miR-133b and miR-532-3p targeted to NFATC4 were likely involved to piglet resistance to C. perfringens type C. This paper provides the valuable resources to deeply understand the genetic basis of C. perfringens type C resistance in piglets and a solid foundation to identify novel markers of C. perfringens type C resistance.

7.
Microb Pathog ; 181: 106181, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276895

RESUMO

Clostridium perfringens (C. perfringens) beta2 (CPB2) toxin may induce necrotizing enteritis (NE) in pigs. Sirtuin1 (SIRT1) is involved in inflammatory intestinal diseases and affects intestinal barrier function. However, the effects of SIRT1 on piglet intestinal disease caused by CPB2 toxin are unclear. This study revealed the role of pig SIRT1 in CPB2 toxin-exposed intestinal porcine epithelial cells (IPEC-J2). Herein, we manifested that SIRT1 was dramatically decreased in IPEC-J2 cells infected with CPB2 toxin. Subsequently, we silenced and overexpressed SIRT1 using siRNA and a overexpression vector in CPB2 toxin-treated IPEC-J2 cells. The results indicated that overexpression of SIRT1 suppressed reactive oxygen species (ROS) generates, the expression tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and Bax, nuclear factor-kappa B (NF-κB p65), phospho (p)-NF-kB p65 and lactate dehydrogenase (LDH) activity and apoptosis in CPB2 toxin-treated IPEC-J2 cells, and increased IL-10, mitochondrial membrane potential (ΔΨm), Bcl-2, Claudin1 and Occludin levels and cell viability. These results indicated that SIRT1 protects IPEC-J2 cells against CPB2 toxin-induced oxidative damage and tight junction (TJ) disruption, which provides a theoretical basis for further study of the molecular regulatory mechanism of SIRT1 in C. perfringens-infected NE in piglets.


Assuntos
Sirtuína 1 , Toxinas Biológicas , Animais , Células Epiteliais , Intestinos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Suínos
8.
Anim Biotechnol ; 34(8): 4000-4014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671929

RESUMO

Deleted in azoospermia-like (DAZL) is essential for mammalian testicular function and spermatogenesis. To explore the molecular characterization, expression patterns, and cellular localization of the DAZL in Hezuo pig testes, testicular tissue was isolated from Hezuo pig at five development stages including 30 days old (30 d), 90 days old (90 d), 120 days old (120 d), 180 days old (180 d), and 240 days old (240 d). DAZL cDNA was first cloned using the RT-PCR method, and its molecular characterization was analyzed using relevant bioinformatics software. Subsequently, the expression patterns and cellular localization of DAZL were evaluated using quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. The cloning and sequence analysis showed that the Hezuo pig DAZL cDNA fragment contained 888 bp open reading frame (ORF) capable of encoding 295 amino acid residues and exhibited high identities with some other mammals. The qRT-PCR and Western blot results indicated that DAZL was specifically expressed in Hezuo pig testes, and DAZL levels of both mRNA and protein were expressed at all five reproductive stages of Hezuo pig testes, with extremely significant higher expression levels in 90 d, 120 d, 180 d, and 240 d than those in 30 d (p < 0.01). Additionally, immunohistochemistry results revealed that DAZL protein was mainly localized in gonocytes at 30 d testes, primary spermatocytes, and spermatozoon at other developmental stages, and Leydig cells throughout five development stages. Together, these results suggested that DAZL may play an important role by regulating the proliferation or differentiation of gonocytes, development of primary spermatocytes and spermatozoon, and functional maintenance of Leydig cells in testicular development and spermatogenesis of Hezuo pig. Nevertheless, the specific regulatory mechanisms underlying these phenomena still requires further investigated and verified.


Assuntos
Espermatogênese , Testículo , Masculino , Animais , Suínos/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Testículo/fisiologia , Espermatogênese/genética , Espermatozoides , Clonagem Molecular , Mamíferos/genética
9.
Anim Biotechnol ; 34(9): 4687-4694, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36905141

RESUMO

The purpose of this study was to examine STC-1's structure, function, and differential expression in large and miniature pigs. We cloned the Hezuo pig's coding sequence, compared its homology, and used bioinformatics to assess the structure. RT-qPCR and Western blot were used to detect the expression in ten tissues of Hezuo pig and Landrace pig. The results showed that Hezuo pig was most closely related to Capra hircus and most distantly related to Danio rerio. The protein STC-1 has a signal peptide and its secondary structure is dominated by the alpha helix. The mRNA expression in the spleen, duodenum, jejunum, and stomach of Hezuo pigs was higher than that of Landrace pigs. And except for heart and duodenum, expression of the protein in Hezuo pig was higher than in another. In conclusion, STC-1 is highly conserved among different breeds of pigs, and the expression and distribution of its mRNA and protein are different in large and miniature pigs. This work can lay the foundation for future study into the mechanism of action of STC-1 in Hezuo pigs and the enhancement of breeding in miniature pigs.


Assuntos
Clonagem de Organismos , Suínos/genética , Animais , Porco Miniatura/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Clonagem Molecular
10.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138983

RESUMO

Indigenous pig populations, including Bamei pigs (BM), Hezuo pigs (HZ), Huixian Qingni Black pigs (HX), and Minxian Black pigs (MX) in Gansu Province, live in a particular climate and a relatively closed geographical environment. These local pig breeds are characterized by excellent characteristics (e.g., cold tolerance, robust disease resistance, and superior meat quality). In the past few years, pig populations in Gansu Province have decreased significantly because of their poor lean meat percentage, high fat content, and slow growth rate. Maintaining the diversity of these four breeds can act as a source of new alleles to be incorporated into commercial breeds which are more susceptible to disease and less adaptable to changing conditions because of inbreeding. Genomic data analysis is adequate for determining the genetic diversity and livestock breeding population structure, even in local pig populations. However, the genetic diversity and population structure of the four native pig populations in Gansu Province are still unknown. Thus, we used "Zhongxin-I" porcine chip for the SNP detection of 102 individuals living on four pig conservation farms. A total of 57,466 SNPs were identified among the four pig breeds. The linkage disequilibrium (LD) plot showed that MX had the highest level of LD, followed by BM, HZ, and HX. The observed heterozygosity (Ho) in all four populations was higher than the expected heterozygosity (He). A principal component analysis (PCA) demonstrated that the four local pig populations were isolated. The identity displayed by the state matrix and G matrix heat map results indicated that small numbers of individuals among the four pig breeds had a high genetic distance and weak genetic relationships. The results of the population genetic structure of BM, HZ, HX, and MX pigs showed a slight genetic diversity loss. Our findings enabled us to better understand the genome characteristics of these four indigenous pig populations, which will provide novel insights for the future germplasm conservation and utilization of these indigenous pig populations.


Assuntos
Variação Genética , Genética Populacional , Humanos , Suínos/genética , Animais , Heterozigoto , Endogamia , Polimorfismo de Nucleotídeo Único , Alelos
11.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982798

RESUMO

Long non-coding RNAs (lncRNAs) modified by n6-methyladenosine (m6A) have been implicated in the development and progression of several diseases. However, the mechanism responsible for the role of m6A-modified lncRNAs in Clostridium perfringens type C piglet diarrhea has remained largely unknown. We previously developed an in vitro model of CPB2 toxin-induced piglet diarrhea in IPEC-J2 cells. In addition, we previously performed RNA immunoprecipitation sequencing (MeRIP-seq), which demonstrated lncRNA EN_42575 as one of the most regulated m6A-modified lncRNAs in CPB2 toxin-exposed IPEC-J2 cells. In this study, we used MeRIP-qPCR, FISH, EdU, and RNA pull-down assays to determine the function of lncRNA EN_42575 in CPB2 toxin-exposed IPEC-J2 cells. LncRNA EN_42575 was significantly downregulated at different time points in CPB2 toxin-treated cells. Functionally, lncRNA EN_42575 overexpression reduced cytotoxicity, promoted cell proliferation, and inhibited apoptosis and oxidative damage, whereas the knockdown of lncRNA EN_42575 reversed these results. Furthermore, the dual-luciferase analysis revealed that METTL3 regulated lncRNA EN_42575 expression in an m6A-dependent manner. In conclusion, METTL3-mediated lncRNA EN_42575 exerted a regulatory effect on IPEC-J2 cells exposed to CPB2 toxins. These findings offer novel perspectives to further investigate the function of m6A-modified lncRNAs in piglet diarrhea.


Assuntos
RNA Longo não Codificante , Toxinas Biológicas , Animais , Suínos , RNA Longo não Codificante/genética , Apoptose/genética , Proliferação de Células , Adenosina , Diarreia , Metiltransferases/genética
12.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069021

RESUMO

Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.


Assuntos
Kisspeptinas , Testículo , Masculino , Animais , Suínos , Testículo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Maturidade Sexual/genética , Espermátides/metabolismo , Reprodução/genética
13.
BMC Genomics ; 23(1): 428, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672687

RESUMO

BACKGROUND: Merino sheep are the most famous fine wool sheep in the world. They have high wool production and excellent wool quality and have attracted worldwide attention. The fleece of the Merino sheep is composed predominantly of wool fibers grown from secondary wool follicles. Therefore, it is necessary to study the development of hair follicles to understand the mechanism of wool production. The hair follicle is a complex biological system involved in a dynamic process governed by gene regulation. The hair follicle development process is very complex and poorly understood. The purpose of our research is to identify candidate genes related to hair follicle development, provide a theoretical molecular breeding basis for the cultivation of fine wool sheep, and provide a reference for the problems of hair loss and alopecia areata that affect human beings. RESULTS: We analyzed mRNAs data in skin tissues of 18 Merino sheep at four embryonic days (E65, E85, E105 and E135) and two postnatal days (P7 and P30). G1 to G6 represent hair follicles developmental at six stages (i.e. E65 to P30). We identified 7879 differentially expressed genes (DEGs) and 12623 novel DEGs, revealed different expression patterns of these DEGs at six stages of hair follicle development, and demonstrated their complex interactions. DEGs with stage-specific expression were significantly enriched in epidermal differentiation and development, hair follicle development and hair follicle morphogenesis and were enriched in many pathways related to hair follicle development. The key genes (LAMA5, WNT10A, KRT25, SOSTDC1, ZDHHC21, FZD1, BMP7, LRP4, TGFß2, TMEM79, SOX10, ITGB4, KRT14, ITGA6, and GLI2) affecting hair follicle morphogenesis were identified by network analysis. CONCLUSION: This study provides a new reference for the molecular basis of hair follicle development and lays a foundation for further improving sheep hair follicle breeding. Candidate genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine wool sheep. These results are a valuable resource for biological investigations of fleece evolution in animals.


Assuntos
Redes Reguladoras de Genes , Folículo Piloso , Animais , Cabelo , Ovinos/genética , Carneiro Doméstico ,
14.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555481

RESUMO

Clostridium perfringens beta2 (CPB2) toxin is one of the main pathogenic toxins produced by Clostridium perfringens, which causes intestinal diseases in animals and humans. The N6-methyladenosine (m6A) modification is the most common reversible modification in eukaryotic disease processes. Methyltransferase-like 3 (METTL3) regulates immunity and inflammatory responses induced by the bacterial infections in animals. However, METTL3's involvement in CPB2-treated intestinal porcine epithelial cell line-J2 (IPEC-J2) remains unclear. In the current study, we used methylated RNA immunoprecipitation-quantitative polymerase chain reaction, Western blotting and immunofluorescence assay to determine the role of METTL3 in CPB2-exposed IPEC-J2 cells. The findings revealed that m6A and METTL3 levels were increased in CPB2 treated IPEC-J2 cells. Functionally, METTL3 overexpression promoted the release of inflammatory factors, increased cytotoxicity, decreased cell viability and disrupted tight junctions between cells, while the knockdown of METTL3 reversed these results. Furthermore, METTL3 was involved in the inflammatory response of IPEC-J2 cells by activating the TLR2/NF-κB signaling pathway through regulating TLR2 m6A levels. In conclusion, METTL3 overexpression triggered the TLR2/NF-κB signaling pathway and promoted CPB2-induced inflammatory responses in IPEC-J2 cells. These findings may provide a new strategy for the prevention and treatment of diarrhea caused by Clostridium perfringens.


Assuntos
NF-kappa B , Receptor 2 Toll-Like , Animais , Linhagem Celular , Clostridium perfringens/metabolismo , Células Epiteliais/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Suínos , Receptor 2 Toll-Like/genética
15.
Microb Pathog ; 156: 104906, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33965507

RESUMO

Clostridium perfringens beta2 (CPB2) toxin can cause intestinal damage and inflammatory responses in a variety of animals, which seriously endanger the healthy development of animal husbandry. Increasing evidence has demonstrated that microRNAs (miRNAs) can play an important regulatory role in the process of pathogenic infection. In our previous study, we found that miR-204 was highly expressed in the ileum tissues of the susceptible group diarrhea piglets after infection with Clostridium perfringens (C. perfringens) type C. In this study, we found that miR-204 was also up-regulated in different time points after CPB2 toxin treatment. Overexpression of miR-204 promoted apoptosis and inflammatory response of intestinal porcine epithelial cells (IPEC-J2), whereas the opposite results were displayed after transfected with miR-204 inhibitor. Furthermore, the luciferase reporter assays confirmed that BCL2L2 was a direct target gene of miR-204. Interestingly, we found that overexpression BCL2L2 attenuated the apoptosis and inflammatory response of CPB2 toxin induced IPEC-J2 cells. In conclusion, these results find that miR-204 promotes the apoptosis and intensify inflammatory response of CPB2 toxin induced IPEC-J2 cells via targeting BCL2L2. These data provide a valuable reference for the piglets resistance diarrhea at the molecular level.


Assuntos
Clostridium perfringens , MicroRNAs , Animais , Apoptose , Clostridium perfringens/genética , Diarreia , Células Epiteliais , MicroRNAs/genética , Suínos
16.
Arch Biochem Biophys ; 701: 108806, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587903

RESUMO

Clostridium perfringens (C. perfringens) is a globally recognized zoonotic pathogen. It has been reported that the beta2-toxin produced by C. perfringens can cause a variety of gastrointestinal diseases and even systemic inflammation. MicroRNA-124a (miR-124a) has been reported to play important roles in the host response to pathogenic infection. Although C. perfringens beta2-toxin induced injury in intestinal porcine epithelial (IPEC-J2) cells has been established, the underlying molecular mechanism is not completely unraveled. Here we show that a significant upregulation of ssc-miR-124a in IPEC-J2 cells after beta2-toxin stimulation was associated with the MiR-124A-1 and MiR-124A-2 gene promoter demethylation status. Importantly, overexpression of ssc-miR-124a significantly increased cell proliferation and decreased apoptosis and cytotoxicity in beta2-toxin treated IPEC-J2 cells. Transfection of IPEC-J2 cells with ssc-miR-124a mimic suppressed beta2-toxin induced inflammation. On the contrary, ssc-miR-124a inhibitor promoted aggravation of cell apoptosis and excessive damage. Furthermore, rho-associated coiled-coil-containing protein kinase 1 (ROCK1) was identified as the direct target gene of ssc-miR-124a in IPEC-J2 cells and its siRNA transfection reversed the promotion of apoptosis and aggravation of cellular damage induced by ssc-miR-124a inhibitor. Overall, we speculated that the miR-124A-1/2 gene was epigenetically regulated in IPEC-J2 cells after beta2-toxin treatment. Upregulation of ssc-miR-124a may restrain ROCK1, and attenuate apoptosis and inflammation induced by beta2-toxin that prevent IPEC-J2 cells from severe damages. We discover a new molecular mechanism by which IPEC-J2 cells counteract beta2-toxin-induced damage through the ssc-miR-124a/ROCK1 axis partially.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Clostridium perfringens , Células Epiteliais/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/patologia , MicroRNAs/genética , Suínos
17.
J Anim Physiol Anim Nutr (Berl) ; 105(1): 167-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32686230

RESUMO

Previous studies have shown that the administration of melatonin (MT) to early post-natal fur-bearing animals increases the numbers of hair follicles (HFs). In this study, the effect of maternal MT supplementation on the HF development in offspring was investigated. To explore the potential underlying mechanisms, the expression of the melatonin receptor 1A (MTNR1A) gene was determined in the offspring. The Rex rabbit was the animal model, and 79 same-day-pregnancy females were randomly assigned to either a control (n = 39) or MT treatment (n = 40) group, and 10 mg MT microcapsules was implanted at the base of the neck of rabbits in the treatment group. Skin, lung, liver, muscle, kidney, heart and duodenum samples were collected from the newborn rabbits. The results showed that MT improved fur quality in the offspring rabbits by reducing the diameter of primary and secondary HFs, and increasing the HF population. MT did not affect the reproductive performance of female rabbits, and it did affect the blood levels of thyroid-stimulating hormone, prolactin and MT. In the offspring rabbits, MT significantly stimulated MTNR1A gene expression in the skin and heart (p < .01), whereas MTNR1A gene expression was significantly suppressed in the liver and kidney (p < .05). These results revealed that maternal MT supplementation increased HF density, reduced hairiness and improved the fur quality in Rex rabbit offspring. Maternal MT supply may modulate the responses of HFs in the offspring by upregulating the expression of MTNR1A in the skin. In this study, implantation of low-dose MT did not affect the reproductive performance of female rabbits or on the growth of their offspring.


Assuntos
Folículo Piloso , Melatonina , Animais , Suplementos Nutricionais , Feminino , Melatonina/farmacologia , Prolactina , Coelhos , Pele
18.
Microb Pathog ; 147: 104379, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32649964

RESUMO

Clostridium perfringens beta2 (CPB2) toxin is an important virulence factor that causes enteric diseases in both humans and animals. To investigate the underlying mechanism in CPB2-induced inflammation and damage in the small intestinal epithelium, intestinal porcine epithelial cells (IPEC-J2) were treated with recombinant CPB2 (rCPB2) toxin. The results showed that IPEC-J2 cell viability was decreased by rCPB2 toxin treatment in a dose- and time-dependent manner. Analysis of cell morphology and Annexin V-FTIC/PI staining revealed that rCPB2 toxin induces cell apoptosis. Indeed, the expression of caspase-3, caspase-8, and caspase-9 was significantly increased at both the mRNA and protein levels in IPEC-J2 cells treated with rCPB2 toxin. The caspase-3 inhibitor Ac-DEVD-CHO reduced rCPB2 toxin-induced cell apoptosis. Moreover, exposure to the toxin increased the expression of interleukin (IL)-6, IL-7, IL-12, and IL-1ß, while decreasing that of transforming growth factor beta 1 (TGFß1). Additionally, rCPB2 toxin treatment also induced intestinal barrier dysfunction, as evidenced by the degradation of zonula occludens (ZO)-1, claudin-1, and E-cadherin, as well as an increase in paracellular permeability. Overall, the results indicated that rCPB2 toxin induces apoptosis and inflammation, in addition to impairing intestinal barrier function in IPEC-J2 cells. Our findings provide a foundation to better understand the pathogenesis of C. perfringens infection and inform strategies to effectively prevent and treat C. perfringens-induced enteric diseases.


Assuntos
Clostridium perfringens , Células Epiteliais , Animais , Apoptose , Linhagem Celular , Humanos , Inflamação , Mucosa Intestinal , Suínos
19.
Microb Pathog ; 136: 103699, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472261

RESUMO

Clostridium perfringens (C. perfringens) type C is one of major pathogenic causing diarrhea and other intestinal inflammatory diseases in piglets, which seriously affects the healthy development of the swine industries. Studies have found that miRNAs play important roles in regulating piglet diarrhea challenged by pathogenic E. coli and Salmonella. However, little is known miRNAs in the ileum of diarrheic piglets caused by C. perfringens type C. Therefore, we studied the expression profiles of the ileum miRNAs of 7-day-old piglets infected with C. perfringens type C using small RNA-Seq, including control (IC), susceptible (IS) and resistant (IR) groups. As a result, 53 differentially expressed miRNAs were found. KEGG pathway analysis for target genes revealed that these miRNAs were involved in ErbB signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. The expression correlation analysis between miRNAs and target genes revealed that the expression of miR-7134-5p had negative correlation with target NFATC4, miR-500 had negative correlation with target ELK1, HSPA2 and IL7R, and miR-92b-3p had negative correlation with target CLCF1 in ileum of IR vs IS group, suggesting that miR-7134-5p targeting to NFATC4, miR-500 targeting to ELK1, HSPA2 and IL7R, and miR-92b-3p targeting to CLCF1 were probably involved in piglet resisting C. perfringens type C. The results will provide value resources for better understanding of the genetic basis of C. perfringens type C resistance in piglet and lays a new foundation for identifying novel markers of C. perfringens type C resistance.


Assuntos
Infecções por Clostridium/veterinária , Clostridium perfringens/crescimento & desenvolvimento , Diarreia/veterinária , Íleo/patologia , MicroRNAs/análise , Doenças dos Suínos/patologia , Animais , Animais Recém-Nascidos , Infecções por Clostridium/patologia , Diarreia/patologia , Suínos
20.
Microb Pathog ; 135: 103567, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31163250

RESUMO

Clostridium perfringens (C. perfringens), a Gram-positive bacterium, is one of the main causing piglet diarrhea, which leads serious economic loss in the world swine industries. Generally, the innate immune response plays a critical role in host defense against pathogen invasion. TLR4, a member of the TLR (Toll-like receptor) family, has been considered to implicate in the host immune responses and induce secretion of inflammatory cytokines during bacterial infection. However, little is clear about the effects of TLR4 and key signaling genes in the process of piglet inflammatory and immune responses after C. perfringens infection. This study aims to explore the effect of C. perfringens type C infection on the key mRNAs of TLR4/MyD88/NF-κB signaling pathways during the process of piglet diarrhea. In this study, the expressions of TLR4 and other key mRNAs in the TLR4/MyD88/NF-κB signaling pathways were quantified in piglet ileum and jejunum tissues among IR (intestinal resistance), IS (intestinal susceptibility) and IC (intestinal control) groups by qPCR and Western blot methods, the concentrations of pro-inflammatory cytokines in intestinal tissues and serum immunoglobulins were also tested by ELISA kits. Results showed that compared to IC group, expressions of ileum TLR4 and TNF-α was significantly increased in the IS and IR groups, specially TBK1 gene; the expressions of ileum TLR2, TRAF6, MyD88 and IL-8 mRNAs was significantly up-regulated in the IS group, the expressions of TLR9, NF-κB, IL-6, IFN-γ and MAPK1 genes were not significant differences among the IR, IS and IC groups. Meanwhile, the protein levels of TLR4, HMGB1 and NF-κB were higher in the IS and IR groups. The levels of jejunum IFN-γ and IL-6, ileum IL-6 and IL-12 were risen in the IR group. Serum immunoglobulin IgA and IgG in the IR and IS groups reached a peak on the 72 h and 48 h post infection, respectively. These findings suggest that C. perfringens type C infection induces host immune responses involving in the TLR4/MyD88/NF-κB signaling pathways in ileum than in jejunum, which may provide valuable information for innate immune mechanisms involved in regulation of piglet diarrhea caused by C. perfringens type C infection.


Assuntos
Infecções por Clostridium/imunologia , Clostridium perfringens/patogenicidade , Intestino Delgado/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Infecções por Clostridium/microbiologia , Citocinas/genética , Citocinas/metabolismo , Diarreia/imunologia , Diarreia/microbiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Imunidade Inata , Imunoglobulinas/sangue , Intestino Delgado/microbiologia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/genética , Suínos , Receptor 4 Toll-Like/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA