Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(8): 502-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37147768

RESUMO

Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ascomicetos , Virulência/genética , Poligalacturonase/metabolismo
2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559211

RESUMO

Several empirical and theoretical studies suggest presence of multiple enhancers per gene that collectively regulate gene expression, and that common sequence variation impacting on the activities of these enhancers is a major source of inter-individual variability in gene expression. However, for vast majority of genes, enhancers and the underlying regulatory variation remains unknown. Even for the genes with well-characterized enhancers, the nature of the combined effects from multiple enhancers and their variants, when known, on gene expression regulation remains unexplored. Here, we have evaluated the combined effects from five SCN5A enhancers and their regulatory variants that are known to collectively correlate with SCN5A cardiac expression and underlie QT interval association in the general population. Using small deletions centered at the regulatory variants in episomal reporter assays in a mouse cardiomyocyte cell line we demonstrate that the variants and their flanking sequences play critical role in individual enhancer activities, likely being a transcription factor (TF) binding site. By performing oligonucleotide-based pulldown assays on predicted TFs we identify the TFs likely driving allele-specific enhancer activities. Using all 32 possible allelic synthetic constructs in reporter assays, representing the five biallelic enhancers in tandem in their genomic order, we demonstrate combined additive effects on overall enhancer activities. Using transient enhancer assays in developing zebrafish embryos we demonstrate the four out the five enhancer elements act as enhancers in vivo . Together, these studies extend the previous findings to uncover the TFs driving the enhancer activities of QT interval associated SCN5A regulatory variants, reveal the additive effects from allelic combinations of these regulatory variants, and prove their potential to act as enhancers in vivo .

3.
Materials (Basel) ; 15(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407860

RESUMO

Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytiscinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA