Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(13): 9021-8, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26966731

RESUMO

Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O40(3-) (WPOM(3-)) and PW12O40(2-) (WPOM(2-)), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM(3-) was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM(3-) and WPOM(2-) were deposited onto a hydrophilic alkylthiol SAM terminated with cationic NH3(+) functional groups (NH3(+)SAM). We found that during the course of the soft landing of WPOM(3-), the relative abundance of WPOM(3-) on FSAM decreased while that of WPOM(2-) increased. We propose that the higher stability of immobilized WPOM(2-) in comparison with WPOM(3-) makes it the preferred charge state of WPOM on both the FSAM and NH3(+)SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C, 2014, 118, 27611-27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster.

2.
Analyst ; 140(9): 2957-63, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25800562

RESUMO

We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded diameter heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet was positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ∼1 µg of mass-selected ions per day will facilitate future studies focused on the controlled deposition of complex molecules on substrates for studies in catalysis, energy storage, and self-assembly.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Desenho de Equipamento , Gases/química , Íons/química
3.
Nat Commun ; 7: 11399, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097686

RESUMO

The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure ∼0.75 nm size molybdenum polyoxometalate (POM) anions on 25 µg (∼0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.

4.
J Am Soc Mass Spectrom ; 26(6): 1027-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25832027

RESUMO

We report a collision-induced dissociation (CID) investigation of the mixed addenda polyoxometalate (POM) anions, PMo(12-n)W(n)O(40)(3-) (n = 0-12). The anions were generated in solution using a straightforward single-step synthesis approach and introduced into the gas phase by electrospray ionization (ESI). Distinct differences in fragmentation patterns were observed for the range of mixed addenda POMs examined in this study. CID of molybdenum-rich anions, PMo(12-n)W(n)O(40)(3-) (n = 0-2), generates an abundant doubly charged fragment containing seven metal atoms (M) and 22 oxygen atoms (M(7)O(22)(2-)) and its complementary singly charged PM(5)O(18)(-) ion. In comparison, the doubly charged Lindqvist anion, (M(6)O(19)(2-)) and its complementary singly charged PM(6)O(21)(-) ion are the dominant fragments of Keggin POMs containing more than two tungsten atoms, PMo(12-n)W(n)O(40)(3-) (n = 3-12). The observed transition in the dissociation pathways with an increase in the number of W atoms in the POM may be attributed to the higher barrier of tungsten-rich anions towards isomerization. We present evidence that the observed distribution of Mo and W atoms in the major M(6)O(19)(2-) and M(7)O(22)(2-) fragment ions is different from that predicted by a random distribution, indicating substantial segregation of the addenda metal atoms in the POMs. Charge reduction of the triply charged precursor anion resulting in formation of doubly charged anions is also observed. This is a dominant pathway for mixed POMs having a majority (8-11) of W atoms and a minor channel for other precursors indicating a close competition between fragmentation and charge loss pathways in CID of POM anions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA