Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37419688

RESUMO

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Assuntos
Plasticidade Neuronal , Receptores de AMPA , Camundongos , Masculino , Animais , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Receptores de Glutamato/metabolismo , Ubiquitinação , Cognição , Hipocampo/metabolismo
2.
Cell Mol Neurobiol ; 40(7): 1213-1222, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32052226

RESUMO

Excitatory neurotransmission relies on the precise targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to the neuronal plasma membrane. Activity-dependent ubiquitination of AMPA receptor (AMPAR) subunits sorts internalised receptors to late endosomes for degradation, which ultimately determines the number of AMPARs on neuronal membrane. Our recent study has demonstrated a functional cross-talk between the phosphorylation and ubiquitination of the GluA1 subunit in mammalian central neurons. However, the existence of such a cross modulation for the GluA2 subunit remains unknown. Here, we have shown that bicuculline induced GluA2 ubiquitination on the same lysine residues (Lys-870 and Lys-882) in the C-terminal as those elicited by the AMPA treatment. Interestingly, bicuculline-induced ubiquitination was markedly enhanced by the phospho-mimetic GluA2 S880E mutant. Pharmacological activation of protein kinase C (PKC) by phorbol ester, which mediates the phosphorylation of GluA2 at Ser-880, augmented bicuculline-induced ubiquitination of GluA2 in cultured neurons. This effect was specific for the GluA2 subunit because phorbol ester did not alter the level of GluA1 ubiquitination. However, phorbol ester-induced enhancement of GluA2 ubiquitination did not require Ser-880 phosphorylation. This suggests that pseudo-phosphorylation of Ser-880 is sufficient but is not necessary for the augmentation of bicuculline-induced GluA2 ubiquitination. Collectively, these data provide the first demonstration of subunit-specific modulation of AMPAR ubiquitination by the PKC-dependent signalling pathway in mammalian central neurons.


Assuntos
Ésteres de Forbol/farmacologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ésteres de Forbol/metabolismo , Ratos , Transmissão Sináptica/efeitos dos fármacos
3.
J Biol Chem ; 292(20): 8186-8194, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28377502

RESUMO

The accumulation of soluble amyloid-ß (Aß) peptides produces profound neuronal changes in the brain during the pathogenesis of Alzheimer's disease. Excessive levels of Aß disrupt excitatory synaptic transmission by promoting the removal of synaptic AMPA receptors (AMPARs), dendritic spine loss, and synaptic depression. Recently, activity-dependent ubiquitination of the GluA1 subunit has been shown to regulate the intracellular sorting of AMPARs toward late endosomes for degradation. However, whether this ubiquitin signaling pathway mediates Aß-induced loss of surface AMPARs is unknown. In this study, we demonstrate that acute exposure of cultured neurons to soluble Aß oligomers induces AMPAR ubiquitination concomitant with the removal of AMPARs from the plasma membrane. Importantly, expression of the GluA1 ubiquitin-deficient mutants inhibited the adverse effects of Aß on the surface expression of AMPARs in neurons. Furthermore, we revealed the cross-talk between GluA1 ubiquitination and phosphorylation, in particular phosphorylation at Ser-845, which is crucial for AMPAR recycling and is known to be dephosphorylated in the presence of Aß. Our data showed that the GluA1 ubiquitin-deficient mutant enhances GluA1 phosphorylation on Ser-845. Conversely, the GluA1 S845D phosphomimetic mutant reduced binding with Nedd4-1 and hence the ubiquitination of AMPARs. Importantly, the GluA1 S845D mutant also prevented Aß-induced removal of surface AMPARs. Taken together, these findings provide the first demonstration of the dynamic cross-modulation of GluA1 ubiquitination and phosphorylation, a process that is perturbed by Aß, in regulating the membrane sorting decision that ultimately determines the number of AMPARs on the cell surface.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de AMPA/metabolismo , Ubiquitinação , Substituição de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Fragmentos de Peptídeos/genética , Fosforilação , Ratos , Receptores de AMPA/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Neural Plast ; 2016: 3204519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073700

RESUMO

Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aß) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aß levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aß-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Transporte Proteico , Sinapses/metabolismo , Sinapses/fisiologia
5.
Front Mol Neurosci ; 10: 347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123470

RESUMO

The molecular mechanisms underlying plastic changes in the strength and connectivity of excitatory synapses have been studied extensively for the past few decades and remain the most attractive cellular models of learning and memory. One of the major mechanisms that regulate synaptic plasticity is the dynamic adjustment of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor content on the neuronal plasma membrane. The expression of surface AMPA receptors (AMPARs) is controlled by the delicate balance between the biosynthesis, dendritic transport, exocytosis, endocytosis, recycling and degradation of the receptors. These processes are dynamically regulated by AMPAR interacting proteins as well as by various post-translational modifications that occur on their cytoplasmic domains. In the last few years, protein ubiquitination has emerged as a major regulator of AMPAR intracellular trafficking. Dysregulation of AMPAR ubiquitination has also been implicated in the pathophysiology of Alzheimer's disease. Here we review recent advances in the field and provide insights into the role of protein ubiquitination in regulating AMPAR membrane trafficking and function. We also discuss how aberrant ubiquitination of AMPARs contributes to the pathogenesis of various neurological disorders, including Alzheimer's disease, chronic stress and epilepsy.

6.
Behav Brain Res ; 318: 36-44, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780721

RESUMO

Molecular mechanisms of depression-like pathophysiology in female rodent models are less reported compared to males, despite its higher prevalence in human females. Moreover, the stress-response in brain circuitries including reward and cognition circuitries varies with age or hormonal status of the females. So, to understand the stress-induced mood and cognitive disorders in intact females (with ovaries) and ovariectomized (OVX) females, we studied changes in mouse hippocampus, a functionally heterogeneous neural structure involved in both affective and cognitive behaviors. Here, we used a 6-day Chronic Unpredictable Stress (CUS) paradigm in mice to induce depression and related mood disorders. Interestingly, intact females and OVX females showed difference in mood disorder sub-phenotypes to CUS. Similar to an earlier report of CUS affecting the critical reward circuitry structure the nucleus accumbens differently in females with and without ovaries, cognitive behavior in intact females and OVX females also responded differentially to CUS, as evident from Morris Water Maze (MWM) test results. We report that the presence or absence of ovarian hormones, particularly the estrogen, has a significant impact in altering the hippocampus related spatial memory and affective behavior, in females. Our results also illustrate that estrogen administration improves both reward and cognitive behavior, and plays a significant role in alleviating stress-induced despair behavior and enhancing spatial reference memory following a brief 6-day stressful paradigm. Further, it also indicates that the NMDA receptor subunits, GRIN2A and GRIN2B, might mediate the effects of estrogen in the hippocampal functions, thus suggestive of a translational significance of the finding.


Assuntos
Estradiol/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Transtornos do Humor/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Estradiol/farmacologia , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Transtornos do Humor/complicações , Ovariectomia , Progesterona/farmacologia , Progesterona/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA