Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258338

RESUMO

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Assuntos
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biologia Sintética , Perileno/farmacologia , Perileno/metabolismo
2.
Org Biomol Chem ; 17(17): 4364-4369, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30984953

RESUMO

Naturally occurring perylenequinonoid pigments (PQPs) have attracted considerable attention owing to their excellent properties of photosensitization. They have been widely investigated as an aspect of photophysics and photobiology. However, their applications in photocatalysis are yet to be explored. We report here that sunlight along with 1 mol% cercosporin, which is one of the perylenequinonoid pigments, catalyzes the direct C-H bond arylation of (het)arenes by a photoredox process with good regioselectivity and broad functional group compatibility. Furthermore, a gram-scale reaction with great conversions of substrates was achieved even by a cercosporin-containing supernatant without organic solvent extraction and purification after liquid fermentation. Thus we set up a bridge between microbial fermentation and organic photocatalysis for chemical reactions in a sustainable, environmentally friendly manner.

3.
Foods ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201145

RESUMO

Plant-based meat analogues offer an environmentally and scientifically sustainable option as a substitute for animal-derived meat. They contribute to reducing greenhouse gas emissions, freshwater consumption, and the potential risks associated with zoonotic diseases linked to livestock production. However, specific processing methods such as extrusion or cooking, using various raw materials, can influence the survival and growth of spoilage and pathogenic microorganisms, resulting in differences between plant-based meat analogues and animal meat. In this study, the microbial communities in five different types of plant-based meat analogues were investigated using high-throughput sequencing. The findings revealed a diverse range of bacteria, including Cyanobacteria, Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Chloroflexi, as well as fungi such as Ascomycota, Basidiomycota, Phragmoplastophyta, Vertebrata, and Mucoromycota. Additionally, this study analyzed microbial diversity at the genus level and employed phenotype prediction to evaluate the relative abundance of various bacterium types, including Gram-positive and Gram-negative bacteria, aerobic, anaerobic, and facultative anaerobic bacteria, as well as potential pathogenic bacteria. The insights gained from this study provide valuable information regarding the microbial communities and phenotypes of different plant-based meat analogues, which could help identify effective storage strategies to extend the shelf-life of these products.

4.
Carbohydr Res ; 523: 108737, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36657220

RESUMO

Steviol glycosides have attracted great interest because of their high levels of sweetness and safety, and absence of calories. Improvement of their sensory qualities via glycosylation modification by glycosyltransferase is a research hotspot. In this study, YjiC, a uridine diphosphate-dependent glycosyltransferase from Bacillus subtilis 168, was found with the ability to glycosylate rebaudioside A (Reb A) to produce a novel mono ß-1, 6-glycosylated Reb A derivative rebaudioside L2 (Reb L2). It has an improved sweetness compared with Reb A. Next, a cascade reaction was established by combining YjiC with sucrose synthase AtSuSy from Arabidopsis thaliana for scale-up preparation of Reb L2. It shows that Reb L2 (30.94 mg/mL) could be efficiently synthesized with an excellent yield of 91.34% within 12 h. Therefore, this study provides a potential approach for the production and application of new steviol glycoside Reb L2, expanding the scope of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glicosiltransferases , Glucosídeos , Catálise
5.
J Agric Food Chem ; 70(16): 5088-5094, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417157

RESUMO

Owing to zero-calorie and advanced organoleptic properties similar to sucrose, the plant-derived rebaudioside M (Reb M) has been considered as a next generation sweetener. However, a low content of Reb M in Stevia rebaudiana Bertoni and low enzymatic activity of UGT76G1, which is an uridine diphosphate glucose (UDPG)-dependent glycosyltransferase with the ability to glycosylate rebaudioside D (Reb D) to produce Reb M through the formation of ß-1,3 glycosidic bond, restrict its commercial usage. To improve the catalytic activity of UGT76G1, a variant UGT76G1-T284S/M88L/L200A was obtained by structure-guided evolution, whose catalytic activity toward Reb D increased by 2.38 times compared with UGT76G1-T284S. This allowed us to prepare Reb M on a large-scale with a great yield of 90.50%. Moreover, molecular dynamics simulation illustrated that UGT76G1-T284S/M88L/L200A reduced distances from Reb D to catalytic residues and UDPG. Hence, we report an efficient method for the potential scale production of Reb M in this study.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glicosiltransferases/química , Glicosiltransferases/genética , Stevia/química , Stevia/genética , Trissacarídeos , Uridina Difosfato Glucose
6.
Front Bioeng Biotechnol ; 10: 985826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091437

RESUMO

Owing to zero-calorie, high-intensity sweetness and good taste profile, the plant-derived sweetener rebaudioside D (Reb D) has attracted great interest to replace sugars. However, low content of Reb D in stevia rebaudiana Bertoni as well as low soluble expression and enzymatic activity of plant-derived glycosyltransferase in Reb D preparation restrict its commercial usage. To address these problems, a novel glycosyltransferase YojK from Bacillus subtilis 168 with the ability to glycosylate Reb A to produce Reb D was identified. Then, structure-guided engineering was performed after solving its crystal structure. A variant YojK-I241T/G327N with 7.35-fold increase of the catalytic activity was obtained, which allowed to produce Reb D on a scale preparation with a great yield of 91.29%. Moreover, based on the results from molecular docking and molecular dynamics simulations, the improvement of enzymatic activity of YojK-I241T/G327N was ascribed to the formation of new hydrogen bonds between the enzyme and substrate or uridine diphosphate glucose. Therefore, this study provides an engineered bacterial glycosyltransferase YojK-I241T/G327N with high solubility and catalytic efficiency for potential industrial scale-production of Reb D.

7.
Sheng Wu Gong Cheng Xue Bao ; 36(7): 1346-1355, 2020 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-32748592

RESUMO

Cytochrome P450 monooxygenases as powerful biocatalysts catalyze a wide range of chemical reactions to facilitate exogenous substances metabolism and biosynthesis of natural products. In order to explore new catalytic reactions and increase the number of P450 biocatalysts used in synthetic biology, a new self-sufficient cytochrome P450 monooxygenase (P450(VpMO)), belongs to CYP116B class, was mined from Variovorax paradoxus S110 genome and expressed in Escherichia coli. Based on characterization of the enzymatic properties, it shows that the optimal pH and temperature for P450(VpMO) reaction activity are 8.0 and 45 °C, respectively. P450(VpMO) is relatively stable at temperatures below 35 °C. The Km and kcat of P450(VpMO) toward 4-Methoxyacetophenone are 0.458 mmol/L and 2.438 min⁻¹, respectively. Importantly, P450(VpMO) was able to catalyze the demethylation reaction for a range of substrates containing methoxy group. Its demethylation reactivity is reasonably better than other P450s belongs to CYP116B class, particularly, for 4-methoxyacetophenone with a great conversion efficiency at 91%, showing that P450(VpMO) could be used as a great biocatalyst candidate for further analysis.


Assuntos
Comamonadaceae , Sistema Enzimático do Citocromo P-450 , Biologia Sintética , Catálise , Comamonadaceae/enzimologia , Comamonadaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA