Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
BMC Genomics ; 25(1): 757, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095712

RESUMO

BACKGROUND: It is known that the neurodevelopmental disorder associated gene, Satb2, plays important roles in determining the upper layer neuron specification. However, it is not well known how this gene regulates other neocortical regions during the development. It is also lack of comprehensive delineation of its spatially regulatory pathways in neocortical development. RESULTS: In this work, we utilized spatial transcriptomics and immuno-staining to systematically investigate the region-specific gene regulation of Satb2 by comparing the Satb2+/+ and Satb2-/- mice at embryonic stages, including the ventricle zone (VZ) or subventricle zone (SVZ), intermediate zone (IZ) and cortical plate (CP) respectively. The staining result reveals that these three regions become moderately or significantly thinner in the Satb2-/- mice. In the cellular level, the cell number increases in the VZ/SVZ, whereas the cell number decreases in the CP. The spatial transcriptomics data show that many important genes and relevant pathways are dysregulated in Satb2-/- mice in a region-specific manner. In the VZ/SVZ, the key genes involved in neural precursor cell proliferation, including the intermediate progenitor marker Tbr2 and the lactate production related gene Ldha, are up-regulated in Satb2-/- mice. In the IZ, the key genes in regulating neuronal differentiation and migration, such as Rnd2, exhibit ectopic expressions in the Satb2-/- mice. In the CP, the lineage-specific genes, Tbr1 and Bcl11b, are abnormally expressed. The neuropeptide related gene Npy is down-regulated in Satb2-/- mice. Finally, we validated the abnormal expressions of key regulators by using immunofluorescence or qPCR. CONCLUSIONS: In summary, our work provides insights on the region-specific genes and pathways which are regulated by Satb2 in neocortical development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz , Neocórtex , Fatores de Transcrição , Transcriptoma , Animais , Neocórtex/metabolismo , Neocórtex/crescimento & desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Camundongos Knockout , Proteínas Repressoras , Proteínas Supressoras de Tumor
2.
BMC Med ; 22(1): 19, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191448

RESUMO

BACKGROUND: The benefits of first-line, cisplatin-based chemotherapy for muscle-invasive bladder cancer are limited due to intrinsic or acquired resistance to cisplatin. Increasing evidence has revealed the implication of cancer stem cells in the development of chemoresistance. However, the underlying molecular mechanisms remain to be elucidated. This study investigates the role of LASS2, a ceramide synthase, in regulating Wnt/ß-catenin signaling in a subset of stem-like bladder cancer cells and explores strategies to sensitize bladder cancer to cisplatin treatment. METHODS: Data from cohorts of our center and published datasets were used to evaluate the clinical characteristics of LASS2. Flow cytometry was used to sort and analyze bladder cancer stem cells (BCSCs). Tumor sphere formation, soft agar colony formation assay, EdU assay, apoptosis analysis, cell viability, and cisplatin sensitivity assay were used to investigate the functional roles of LASS2. Immunofluorescence, immunoblotting, coimmunoprecipitation, LC-MS, PCR array, luciferase reporter assays, pathway reporter array, chromatin immunoprecipitation, gain-of-function, and loss-of-function approaches were used to investigate the underlying mechanisms. Cell- and patient-derived xenograft models were used to investigate the effect of LASS2 overexpression and a combination of XAV939 on cisplatin sensitization and tumor growth. RESULTS: Patients with low expression of LASS2 have a poorer response to cisplatin-based chemotherapy. Loss of LASS2 confers a stem-like phenotype and contributes to cisplatin resistance. Overexpression of LASS2 results in inhibition of self-renewal ability of BCSCs and increased their sensitivity to cisplatin. Mechanistically, LASS2 inhibits PP2A activity and dissociates PP2A from ß-catenin, preventing the dephosphorylation of ß-catenin and leading to the accumulation of cytosolic phospho-ß-catenin, which decreases the transcription of the downstream genes ABCC2 and CD44 in BCSCs. Overexpression of LASS2 combined with a tankyrase inhibitor (XAV939) synergistically inhibits tumor growth and restores cisplatin sensitivity. CONCLUSIONS: Targeting the LASS2 and ß-catenin pathways may be an effective strategy to overcome cisplatin resistance and inhibit tumor growth in bladder cancer patients.


Assuntos
Cisplatino , Esfingosina N-Aciltransferase , Neoplasias da Bexiga Urinária , Humanos , Apoptose , beta Catenina , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Esfingosina N-Aciltransferase/metabolismo
3.
Dev Biol ; 485: 61-69, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35283102

RESUMO

Epigenetic regulation of gene expression plays a central role in bladder urothelium development and maintenance. ATPase-dependent chromatin remodeling is a major epigenetic regulatory mechanism, but its role in the bladder has not been explored. Here, we show the functions of Arid1a, the largest subunit of the SWI/SNF or BAF chromatin remodeling ATPase complex, in embryonic and adult bladder urothelium. Knockout of Arid1a in urothelial progenitor cells significantly increases cell proliferation during bladder development. Deletion of Arid1a causes ectopic cell proliferation in the terminally differentiated superficial cells in adult mice. Consistently, gene-set enrichment analysis of differentially expressed genes demonstrates that the cell cycle-related pathways are significantly enriched in Arid1a knockouts. Gene-set of the polycomb repression complex 2 (PRC2) pathway is also enriched, suggesting that Arid1a antagonizes the PRC2-dependent epigenetic gene silencing program in the bladder. During acute cyclophosphamide-induced bladder injury, Arid1a knockouts develop hyperproliferative and hyperinflammatory phenotypes and exhibit a severe loss of urothelial cells. A Hallmark gene-set of the oxidative phosphorylation pathway is significantly reduced in Aria1a mutants before injury and is unexpectedly enriched during injury response. Together, this study uncovers functions of Arid1a in both bladder progenitor cells and the mature urothelium, suggesting its critical roles in urothelial development and regeneration.


Assuntos
Bexiga Urinária , Urotélio , Adenosina Trifosfatases/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bexiga Urinária/metabolismo , Urotélio/metabolismo
4.
J Biochem Mol Toxicol ; 37(10): e23435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352117

RESUMO

Vestigial like family member 4 (VGLL4), a member of the Hippo pathway, is a transcriptional cofactor involved in many biological processes, such as tumor progression, postnatal heart growth, and muscle regeneration. However, the VGLL4 expression pattern in vivo remains unclear. To detect and trace Vgll4-expressing cells and their progeny, we generated and characterized a new tamoxifen-inducible Dre knock-in mouse line, Vgll4-DreER. This mouse line expressed DreER (Dre recombinase fused to the estrogen receptor) under the control of the endogenous Vgll4 promoter. After crossing the Vgll4-DreER mouse line with the Dre-responsive reporter H11-rRFP, Dre-mediated recombination in the tissue was monitored on the basis of red fluorescent protein (RFP) signals, which indicated the distribution of VGLL4-positive cells in vivo. Our data revealed that VGLL4 is widely expressed in various cell types at embryonic and neonatal stages. After comparison with our previously reported Vgll4-GFP mouse, we found that the RFP signal profile was wider than the green fluorescent protein (GFP) pattern, indicating that Vgll4-DreER is more sensitive for labeling VGLL4-expressing cells. We next used a dual-recombination system to simultaneously label VGLL4- and keratin 5 (KRT5)-positive cell populations, and no crosstalk was observed in the Krt5-CreER;Vgll4-DreER;R26-rGlR mice. Taken together, the Vgll4-DreER mouse line is a valuable new tool for examining the precise VGLL4 expression profile and conditional manipulating of VGLL4-expressing cells and their progeny.


Assuntos
Tamoxifeno , Fatores de Transcrição , Camundongos , Animais , Camundongos Transgênicos , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
5.
Development ; 144(3): 400-408, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049658

RESUMO

Urothelium is the protective lining of the urinary tract. The mechanisms underlying urothelial formation and maintenance are largely unknown. Here, we report the stage-specific roles of PRC2 epigenetic regulators in embryonic and adult urothelial progenitors. Without Eed, the obligatory subunit of PRC2, embryonic urothelial progenitors demonstrate reduced proliferation with concomitant dysregulation of genes including Cdkn2a (p16), Cdkn2b (p15) and Shh. These mutants display premature differentiation of keratin 5-positive (Krt5+) basal cells and ectopic expression of squamous-like differentiation markers. Deletion of Ezh2, the major enzymatic component of PRC2, causes upregulation of Upk3a+ superficial cells. Unexpectedly, Eed and Eed/Ezh2 double mutants exhibit delayed superficial cell differentiation. Furthermore, Eed regulates the proliferative and regenerative capacity of adult urothelial progenitors and prevents precocious differentiation. Collectively, these findings uncover the epigenetic mechanism by which PRC2 controls urothelial progenitor cell fate and the timing of differentiation, and further suggest an epigenetic basis of urothelial maintenance and regeneration.


Assuntos
Complexo Repressor Polycomb 2/fisiologia , Regeneração/fisiologia , Bexiga Urinária/crescimento & desenvolvimento , Bexiga Urinária/fisiologia , Urotélio/crescimento & desenvolvimento , Urotélio/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Subunidades Proteicas , Regeneração/genética , Bexiga Urinária/embriologia , Urotélio/embriologia
6.
Hum Mol Genet ; 24(7): 1991-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25510506

RESUMO

Urofacial syndrome (UFS) is an autosomal recessive disease with severe dysfunctional urination including urinary incontinence (UI). Biallelic mutations of HPSE2 are discovered from UFS patients, suggesting that HPSE2 is a candidate disease gene. Here, we show that deletion of Hpse2 is sufficient to cause the UFS-like phenotype in mice. Hpse2 knockout mutants display a distended bladder (megacystis) phenotype and abnormal voiding behavior similar to that found in patients. While Hpse2 is largely dispensable for detrusor smooth muscle and urothelial cell fate determination, the mutants have significantly lower rates of cell proliferation than wild-type littermate controls. All Hpse2 mutants have a growth retardation phenotype and die within a month after birth. Comprehensive blood chemistry and urinalysis indicate that Hpse2 mutants have renal dysfunction and malnutrition. We provide evidence that transforming growth factor beta (Tgfß) signaling is attenuated at birth. However, Tgfß activity is significantly enhanced at later stages when the urological phenotype is severe, and the mutant bladders have accumulated excessive amount of fibrotic tissue. Together, these findings strongly suggest that Hpse2 is a causative gene of human UFS and further uncover unexpected roles of Hpse2 in bladder physiology, tissue remodeling and Tgfß signaling.


Assuntos
Modelos Animais de Doenças , Glucuronidase/genética , Camundongos , Doenças Urológicas/enzimologia , Doenças Urológicas/genética , Animais , Fácies , Feminino , Deleção de Genes , Glucuronidase/metabolismo , Humanos , Masculino , Camundongos Knockout , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Doenças Urológicas/metabolismo , Doenças Urológicas/patologia
7.
Dev Biol ; 385(1): 41-51, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24479159

RESUMO

Anorectal malformation (ARM) is a common birth defect but the developmental history and the underlying molecular mechanism are poorly understood. Using murine genetic models, we report here that a signaling molecule Dickkopf-1 (Dkk1) is a critical regulator. The anorectal and genitourinary tracts are major derivatives of caudal hindgut, or the cloaca.Dkk1 is highly expressed in the dorsal peri-cloacal mesenchymal (dPCM) progenitors. We show that the deletion of Dkk1 causes the imperforate anus with rectourinary fistula. Mutant genital tubercles exhibit a preputial hypospadias phenotype and premature urethral canalization.Dkk1 mutants have an ectopic expansion of the dPCM tissue, which correlates with an aberrant increase of cell proliferation and survival. This ectopic tissue is detectable before the earliest sign of the anus formation, suggesting that it is most likely the primary or early cause of the defect. Deletion of Dkk1 results in an elevation of the Wnt/ß-catenin activity. Signaling molecules Shh, Fgf8 and Bmp4 are also upregulated. Furthermore, genetic hyperactivation of Wnt/ß-catenin signal pathway in the cloacal mesenchyme partially recapitulates Dkk1 mutant phenotypes. Together, these findings underscore the importance ofDKK1 in regulating behavior of dPCM progenitors, and suggest that formation of anus and urethral depends on Dkk1-mediated dynamic inhibition of the canonical Wnt/ß-catenin signal pathway.


Assuntos
Canal Anal/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/embriologia , Reto/embriologia , Sistema Urogenital/embriologia , Canal Anal/anormalidades , Animais , Malformações Anorretais , Anus Imperfurado/embriologia , Anus Imperfurado/genética , Proteína Morfogenética Óssea 4/biossíntese , Diferenciação Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Ativação Enzimática/genética , Fator 8 de Crescimento de Fibroblasto/biossíntese , Proteínas Hedgehog/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Reto/anormalidades , Células-Tronco , Regulação para Cima , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
8.
Opt Express ; 22(3): 2996-3012, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663591

RESUMO

We report the implementation of the XOR and XNOR logical operations using an electro-optic circuit, which is fabricated by CMOS-compatible process in the silicon-on-insulator (SOI) platform. The circuit consists of two cascaded add-drop microring resonators (MRRs), which are modulated through electric-field-induced carrier depletion in reverse biased pn junctions embedded in the ring waveguides. The resonance wavelength mismatch between the two nominally identical MRRs caused by fabrication errors is compensated by thermal tuning. Simultaneous bitwise XOR and XNOR operations of the two electrical modulating signals at the speed of 12.5 Gb/s are demonstrated. And 20 Gb/s XOR operation at one output port of the circuit is achieved. We explain the phenomena that one half of the resonance regions of the device are much more sensitive to the round-trip phase shift in the ring waveguides than the other half resonance regions. Characteristic graphs with logarithmic phase coordinate are proposed to analyze the sensitivity of the demonstrated circuit, as well as several typical integrated optical structures. It is found that our circuit with arbitrary chosen parameters has similar sensitivity to MRRs under the critical coupling.

9.
Zhonghua Yi Xue Za Zhi ; 94(21): 1651-3, 2014 Jun 03.
Artigo em Chinês | MEDLINE | ID: mdl-25152290

RESUMO

OBJECTIVE: To compare the application of Coopdech bronchial blocker and double lumen bronchial tube during one lung ventilation in children. METHODS: Forty children undergoing one lung ventilation for thoracic surgery at Shantou Central Hospital from January 2012 to June 2013, approved by hospital ethics committee, were randomized into Coopdech bronchial blocker group (group A) and double-lumen tube group (group B). Anesthetic management and lung isolation were performed according to a standardized protocol. Two groups of children with the intubation time, intubation success rate, collapse score, the frequency of postoperative hoarseness were recorded. Before and after one lung ventilation in patients of the two groups of PaCO2, PaO2 and airway pressure (PAW) changes were recorded. RESULTS: The intubation time in A was longer than those of group B ((224 ± 72)vs(165 ± 46) s, P < 0.05), the success rate of intubation(100% vs 85%, P < 0.05), collapse score in A group was higher than in group B (95% vs 75%, P < 0.05) , Sore throat hoarseness occurred after operation in A group was lower than in B group (10% vs 35%, P < 0.05) , PaO2 was higher in group A after one lung ventilation for 30 min ((206 ± 58)vs(148 ± 63) mmHg, P < 0.05), PaCO2 and PAW were lower than group B ((36 ± 4) vs (45 ± 7) mmHg;(21.6 ± 3.2)vs(29.3 ± 5.5) cm H2O, P < 0.05). CONCLUSION: The Coodech bronchial blocker provided effective surgical exposure with less throat injuries, higher intubation success rate, lower airway pressure in children during video-assisted thoracoscopic surgery.


Assuntos
Brônquios/fisiologia , Criança , Humanos , Pulmão , Ventilação Monopulmonar , Cirurgia Torácica Vídeoassistida , Procedimentos Cirúrgicos Torácicos
10.
Cell Death Discov ; 10(1): 209, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697957

RESUMO

Hematopoiesis ensures tissue oxygenation, and remodeling as well as immune protection in vertebrates. During embryogenesis, hemangioblasts are the source of all blood cells. Gata1a and pu.1 are co-expressed in hemangioblasts before hemangioblasts are differentiated into blood cells. However, the genes that determine the differentiation of hemangioblasts into myeloid or erythroid cell lineages have not been fully uncovered. Here we showed that miRNA-7145, a miRNA with previously unknown function, was enriched in erythrocytes at the definitive wave, but not expressed in myeloid cells. Overexpression and loss-of-function analysis of miRNA-7145 revealed that miRNA-7145 functions as a strong inhibitor for myeloid progenitor cell differentiation while driving erythropoiesis during the primitive wave. Furthermore, we confirmed that cuedc2 is one of miRNA-7145 targeted-genes. Overexpression or knock-down of cuedc2 partially rescues the phenotype caused by miRNA-7145 overexpression or loss-of-function. As well, overexpression and loss-of-function analysis of cuedc2 showed that cuedc2 is required for myelopoiesis at the expense of erythropoiesis. Finally, we found that overexpression of zebrafish cuedc2 in 293 T cell inhibits the JAK1/STAT3 signaling pathway. Collectively, our results uncover a previously unknown miRNA-7145-cuedc2 axis, which regulate hematopoiesis through inhibiting the JAK1/STAT3 signaling pathway.

11.
Nutr Rev ; 82(2): 166-175, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37195440

RESUMO

CONTEXT: Overactive bladder is treated mainly with behavioral and drug therapy, and symptoms of urinary frequency and incontinence are challenging to eliminate. There is thus a continuous unmet need for new drugs with a substitution effect mechanism. OBJECTIVE: It not known whether vitamin D deficiency can lead to overactive bladder or urinary incontinence or whether vitamin D supplementation alleviates bladder symptoms. This comprehensive systematic review with meta-analysis was conducted to determine whether overactive bladder is associated with vitamin D deficiency. DATA SOURCES: The PubMed and Cochrane Library databases were searched systematically up to July 3, 2022. DATA EXTRACTION: Initially, 706 articles were identified in the literature search, of which 13 were included in the systematic review: 4 randomized controlled trials, 3 cohort studies, 3 cross-sectional studies, and 3 case-control studies. DATA ANALYSIS: An increased risk of overactive bladder and urinary incontinence was observed with vitamin D deficiency (odds ratio [OR] = 4.46; 95%CI, 1.03-19.33; P = 0.046 and OR = 1.30; 95%CI, 1.01-1.66; P = 0.036, respectively). Vitamin D levels were relatively low in patients with overactive bladder or urinary incontinence (SMD = -0.33; 95%CI, -0.61 to -0.06, P = 0.019). On the basis of existing data, the risk of urinary incontinence was reduced by 66% after vitamin D supplementation (OR = 0.34; 95%CI, 0.18-0.66; P = 0.001). Egger test was conducted to assess publication bias, and the results were tested for robustness using a sensitivity analysis. CONCLUSIONS: Vitamin D deficiency increases the risk of overactive bladder and urinary incontinence, and vitamin D supplementation reduces the risk of urinary incontinence. The development of new strategies to prevent or alleviate bladder symptoms is crucial. Vitamin D supplementation may be gaining recognition as an effective strategy for prevention or alleviation of bladder symptoms such as overactive bladder and incontinence. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42022351443.


Assuntos
Bexiga Urinária Hiperativa , Incontinência Urinária , Deficiência de Vitamina D , Humanos , Estudos Transversais , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/etiologia , Incontinência Urinária/etiologia , Incontinência Urinária/complicações , Vitamina D/uso terapêutico , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Vitaminas/uso terapêutico
12.
Ann Lab Med ; 44(5): 401-409, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469636

RESUMO

Background: Millions of patients undergo cardiac surgery each year. The red blood cell distribution width (RDW) could help predict the prognosis of patients who undergo percutaneous coronary intervention or coronary artery bypass surgery. We investigated whether the RDW has robust predictive value for the 30-day mortality among patients in an intensive care unit (ICU) after undergoing cardiac surgery. Methods: Using the Medical Information Mart for Intensive Care-IV Database, we retrieved data for 11,634 patients who underwent cardiac surgery in an ICU. We performed multivariate Cox regression analysis to model the association between the RDW and 30-day mortality and plotted Kaplan-Meier curves. Subgroup analyses were stratified using relevant covariates. Receiver operating characteristic (ROC) curves were used to determine the predictive value of the RDWs. Results: The total 30-day mortality rate was 4.2% (485/11,502). The elevated-RDW group had a higher 30-day mortality rate than the normal-RDW group (P&0.001). The robustness of our data analysis was confirmed by performing subgroup analyses. Each unit increase in the RDW was associated with a 17% increase in 30-day mortality when the RDW was used as a continuous variable (adjusted hazard ratio=1.17, 95% confidence interval, 1.10-1.25). Our ROC results showed the predictive value of the RDW. Conclusions: An elevated RDW was associated with a higher 30-day mortality in patients after undergoing cardiac surgery in an ICU setting. The RDW can serve as an efficient and accessible method for predicting the mortality of patients in ICUs following cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Bases de Dados Factuais , Índices de Eritrócitos , Unidades de Terapia Intensiva , Estimativa de Kaplan-Meier , Modelos de Riscos Proporcionais , Curva ROC , Humanos , Feminino , Masculino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Cardíacos/mortalidade , Área Sob a Curva , Cuidados Críticos , Prognóstico , Ponte de Artéria Coronária/mortalidade , Intervenção Coronária Percutânea/mortalidade
13.
NPJ Precis Oncol ; 8(1): 14, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245587

RESUMO

Bladder cancer (BC) is a heterogeneous disease with varying clinical outcomes. Recent evidence suggests that cancer progression involves the acquisition of stem-like signatures, and assessing stemness indices help uncover patterns of intra-tumor molecular heterogeneity. We used the one-class logistic regression algorithm to compute the mRNAsi for each sample in BLCA cohort. We subsequently classified BC patients into two subtypes based on 189 mRNAsi-related genes, using the unsupervised consensus clustering. Then, we identified nine hub genes to construct a stemness-related prognostic index (SRPI) using Cox regression, LASSO regression and Random Forest methods. We further validated SRPI using two independent datasets. Afterwards, we examined the molecular and immune characterized of SRPI. Finally, we conducted multiply drug screening and experimental approaches to identify and confirm the most proper agents for patients with high SRPI. Based on the mRNAsi-related genes, BC patients were classified into two stemness subtypes with distinct prognosis, functional annotations, genomic variations and immune profiles. Using the SRPI, we identified a specific subgroup of BC patients with high SRPI, who had a poor response to immunotherapy, and were less sensitive to commonly used chemotherapeutic agents, FGFR inhibitors, and EGFR inhibitors. We further identified that dasatinib was the most promising therapeutic agent for this subgroup of patients. This study provides further insights into the stemness classification of BC, and demonstrates that SRPI is a promising tool for predicting prognosis and therapeutic opportunities for BC patients.

14.
Front Pharmacol ; 14: 1098184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180718

RESUMO

Introduction: The endothelial glycocalyx degrading enzyme heparanase-1 (HPSE1) is a major contributor to kidney diseases, such as glomerulonephritis and diabetic nephropathy. Therefore, inhibition of HPSE1 could be an interesting therapeutic strategy to treat glomerular diseases. A possible HPSE1 inhibitor is heparanase-2 (HPSE2) because HPSE2 is a structural homolog of HPSE1 without enzymatic activity. The importance of HPSE2 has been recently demonstrated in HPSE2-deficient mice, since these mice developed albuminuria and died within a few months after birth. We postulate that inhibition of HPSE1 activity by HPSE2 is a promising therapeutic strategy to target albuminuria and resulting renal failure. Methods: First, we evaluated the regulation of HPSE2 expression in anti-GBM and LPS-induced glomerulonephritis, streptozotocin-induced diabetic nephropathy, and adriamycin nephropathy by qPCR and ELISA. Second, we measured the HPSE1 inhibiting capacity of HPSE2 protein and 30 different HPSE2 peptides and assessed their therapeutic potential in both experimental glomerulonephritis and diabetic nephropathy using kidney function and cortical mRNA expression of HPSE1 and cytokines as outcome parameters. Results: HPSE2 expression was downregulated under inflammatory and diabetic conditions, whereas this effect on HPSE2 expression was absent with HPSE1 inhibition and in HPSE1-deficient mice. Both HPSE2 protein and a mixture of the three most potent HPSE1 inhibitory HPSE2 peptides could prevent LPS and streptozotocin induced kidney injury. Discussion: Taken together, our data suggest a protective effect of HPSE2 in (experimental) glomerular diseases and support the therapeutic potential of HPSE2 as HPSE1 inhibitor in glomerular diseases.

15.
Cell Death Discov ; 9(1): 264, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500639

RESUMO

To understand how brain regions form and work, it is important to explore the spatially variable genes (SVGs) enriched in specific brain regions during development. Spatial transcriptomics techniques provide opportunity to select SVGs in the high-throughput way. However, previous methods neglected the ranking order and combinatorial effect of SVGs, making them difficult to automatically select the high-priority SVGs from spatial transcriptomics data. Here, we proposed a novel computational pipeline, called SVGbit, to rank the individual and combinatorial SVGs for marker selection in various brain regions, which was tested in different kinds of public datasets for both human and mouse brains. We then generated the spatial transcriptomics and immunohistochemistry data from mouse brain at critical embryonic and neonatal stages. The results show that our ranking and clustering scheme captures the key SVGs which coincide with known anatomic regions in the developing mouse brain. More importantly, SVGbit can facilitate the identification of multiple gene combination sets in different brain regions. We identified three dynamical sub-regions which can be segregated by the staining of Sox2 and Calb2 in thalamus, and we also found that Nr4a2 expression gradually segregates the neocortex and hippocampus during the development. In summary, our work not only reveals the spatiotemporal dynamics of individual and combinatorial SVGs in developing mouse brain, but also provides a novel computational pipeline to facilitate the selection of marker genes from spatial transcriptomics data.

16.
Front Neurol ; 14: 1271655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928139

RESUMO

Acute pain-related pathology is a significant challenge in clinical practice, and the limitations of traditional pain-relief drugs have made it necessary to explore alternative approaches. Photobiomodulation (PBM) therapy using CO2 laser has emerged as a promising option. In this study, we aimed to identify the optimal parameters of CO2 laser irradiation for acute pain relief through in vivo and in vitro experiments. First, we validated the laser intensity used in this study through bone marrow mesenchymal stem cells (BMSCs) experiments to ensure it will not adversely affect stem cell viability and morphology. Then we conducted a detailed evaluation of the duty cycle and frequency of CO2 laser by the hot plate and formalin test. Results showed a duty cycle of 3% and a frequency of 25 kHz produced the best outcomes. Additionally, we investigated the potential mechanisms underlying the effects of CO2 laser by immunohistochemical staining, and found evidence to suggest that the opioid receptor may be involved in its analgesic effect. In conclusion, this study provides insights into the optimal parameters and underlying mechanisms of CO2 laser therapy for effective pain relief, thereby paving the way for future clinical applications.

18.
Front Oncol ; 13: 1064548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168370

RESUMO

Three-dimensional cell tissue culture, which produces biological structures termed organoids, has rapidly promoted the progress of biological research, including basic research, drug discovery, and regenerative medicine. However, due to the lack of algorithms and software, analysis of organoid growth is labor intensive and time-consuming. Currently it requires individual measurements using software such as ImageJ, leading to low screening efficiency when used for a high throughput screen. To solve this problem, we developed a bladder cancer organoid culture system, generated microscopic images, and developed a novel automatic image segmentation model, AU2Net (Attention and Cross U2Net). Using a dataset of two hundred images from growing organoids (day1 to day 7) and organoids with or without drug treatment, our model applies deep learning technology for image segmentation. To further improve the accuracy of model prediction, a variety of methods are integrated to improve the model's specificity, including adding Grouping Cross Merge (GCM) modules at the model's jump joints to strengthen the model's feature information. After feature information acquisition, a residual attentional gate (RAG) is added to suppress unnecessary feature propagation and improve the precision of organoids segmentation by establishing rich context-dependent models for local features. Experimental results show that each optimization scheme can significantly improve model performance. The sensitivity, specificity, and F1-Score of the ACU2Net model reached 94.81%, 88.50%, and 91.54% respectively, which exceed those of U-Net, Attention U-Net, and other available network models. Together, this novel ACU2Net model can provide more accurate segmentation results from organoid images and can improve the efficiency of drug screening evaluation using organoids.

19.
iScience ; 26(6): 106925, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37332606

RESUMO

Urinary tract infection (UTI) is a pervasive health problem worldwide. Patients with a history of UTIs suffer increased risk of recurrent infections, a major risk of antibiotic resistance. Here, we show that bladder infections induce expression of Ezh2 in bladder urothelial cells. Ezh2 is the methyltransferase of polycomb repressor complex 2 (PRC2)-a potent epigenetic regulator. Urothelium-specific inactivation of PRC2 results in reduced urine bacterial burden, muted inflammatory response, and decreased activity of the NF-κB signaling pathway. PRC2 inactivation also facilitates proper regeneration after urothelial damage from UTIs, by attenuating basal cell hyperplasia and increasing urothelial differentiation. In addition, treatment with Ezh2-specific small-molecule inhibitors improves outcomes of the chronic and severe bladder infections in mice. These findings collectively suggest that the PRC2-dependent epigenetic reprograming controls the amplitude of inflammation and severity of UTIs and that Ezh2 inhibitors may be a viable non-antibiotic strategy to manage chronic and severe UTIs.

20.
Front Nutr ; 9: 967332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407534

RESUMO

Background: This study aimed to investigate the relationship between the blood urea nitrogen to serum albumin ratio (BAR) and in-hospital mortality in patients with sepsis. Materials and methods: This is a retrospective cohort study. All septic patient data for the study were obtained from the intensive care unit of Beth Israel Deaconess Medical Center. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using multivariable Cox regression analyses. Survival curves were plotted and subgroup analyses were stratified by relevant covariates. Results: Among 23,901 patients, 13,464 with sepsis were included. The overall in-hospital mortality rate was 18.9% (2550/13464). After adjustment for confounding factors, patients in the highest BAR quartile had an increased risk of sepsis death than those in the lowest BAR quartile (HR: 1.42, 95% CI: 1.3-1.55), using BAR as a categorical variable. When BAR was presented as a continuous variable, the prevalence of in-hospital sepsis-related death increased by 8% (adjusted HR: 1.08, 95% CI: 1.07-1.1, P < 0.001) for each 5-unit increase in BAR, irrespective of confounders. Stratified analyses indicated age interactions (P < 0.001), and the correlation between BAR and the probability of dying due to sepsis was stable. Conclusion: BAR was significantly associated with in-hospital mortality in intensive care patients with sepsis. A higher BAR in patients with sepsis is associated with a worse prognosis in the ICU in the USA. However, further research is required to confirm this finding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA