Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776919

RESUMO

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Assuntos
Fungos , Microbioma Gastrointestinal , Micobioma , Animais , Humanos , Masculino , Camundongos , Fezes/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico/genética , Genômica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma , Filogenia , Feminino , Adulto , Pessoa de Meia-Idade
2.
Anal Bioanal Chem ; 416(2): 583-595, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062195

RESUMO

Arnebiae Radix, commonly known as "Zicao," can be easily confused with other compounding species, posing challenges for its clinical use. Here, we developed a comprehensive strategy to systematically characterize the diverse components across Arnebiae Radix and its three confusing species. First, an offline two-dimensional liquid chromatography (2D-LC) system integrating hydrophilic interaction chromatography (HILIC) and reverse phase (RP) separations was established, enabling effective separation and detection of more trace constituents. Second, a polygonal mass defect filtering (MDF) workflow was implemented to screen target ions and generate a precursor ion list (PIL) to guide multistage mass (MSn) data acquisition. Third, a three-step characterization strategy utilizing diagnostic ions and neutral losses was developed for rapid determination of molecular formulas, structure classes, and compound identification. This approach enabled systematic characterization of Arnebiae Radix and its three confusing species, with 437 components characterized including 112 shikonins, 22 shikonfurans, 144 phenolic acids, 131 glycosides, 18 flavonoids, and 10 other compounds. Additionally, 361, 230, 340, and 328 components were identified from RZC, YZC, DZC, and ZZC, respectively, with 142 common components and 30 characteristic components that may serve as potential markers for distinguishing the four species. In summary, this is the first comprehensive characterization and comparison of the phytochemical profiles of Arnebiae Radix and its three confusing species, advancing our understanding of this herbal medicine for quality control.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massa com Cromatografia Líquida , Flavonoides/análise , Íons
3.
J Nat Prod ; 87(2): 252-265, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38294199

RESUMO

Eleven new steroidal alkaloids, along with nine known related compounds, were isolated from the bulbs of Fritillaria sinica. Seven pairs of diastereomers were identified, including six and four 20-deoxy cevanine-type steroidal alkaloid diastereomers with molecular weights of 413 and 415, respectively. Structures were elucidated based on spectroscopic data analysis, chemical derivatization, and single-crystal X-ray diffraction analysis. Compounds 5, 9, 11, 12, 16, and 20 exhibited significant in vitro cytotoxic activity against non-small-cell lung cancer with CC50 values from 6.8 ± 3.9 to 12 ± 5 µM.


Assuntos
Alcaloides , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Fritillaria , Neoplasias Pulmonares , Humanos , Fritillaria/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estrutura Molecular , Neoplasias Pulmonares/tratamento farmacológico , Alcaloides/química , Esteroides/química
4.
Rapid Commun Mass Spectrom ; 37(9): e9483, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718976

RESUMO

RATIONALE: Diterpene lactones (DL) in Andrographis paniculata (AP) are known as "natural antibiotics" for their excellent antibacterial activity. During mass spectrometry (MS) analysis, the hydroxyl groups in the AP DL skeleton are prone to neutral loss of H2 O, producing high in-source fragment peaks and affecting the characterization of these components. METHODS: Mass tags were applied during the MS data acquisition step, and special adduct ion form was used to guide the data processing and characterization steps. Besides, the total number of characterized AP DLs significantly increased when combining the number of neutrally lost H2 O from AP DLs, incorporating information on the diagnostic ions, and adopting molecular networks generated with the Global Natural Products Social Molecular Networking database. RESULTS: Ninety-nine DLs, comprising 6 monohydroxyl groups, 20 dihydroxyl groups, 27 trihydroxy groups, and 46 DLs with more than 3 hydroxyl groups, were characterized from AP. In addition, based on the characteristic fragments in the product ions (C3 H4 , Δm/z = 40.03 Da), it could be assumed that 90 DLs had the C19-OH structure among the identified DLs. The current study provides a new approach for collecting, processing, and characterizing MS analysis of natural DLs prone to in-source fragmentation. CONCLUSIONS: MS characterization of AP DLs was significantly improved, and many potential new compounds were identified in AP. This characterization provides new methods for the purification and identification of AP DLs.


Assuntos
Andrographis , Diterpenos , Andrographis paniculata , Lactonas/química , Andrographis/química , Espectrometria de Massas , Extratos Vegetais/química , Diterpenos/química
5.
Anal Bioanal Chem ; 415(14): 2795-2807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133542

RESUMO

Animal-derived drugs are an indispensable part of folk medicine worldwide. However, their chemical constituents are poorly approached, which leads to the low level of the quality standard system of animal-derived drugs and further causes a chaotic market. Natural peptides are ubiquitous throughout the organism, especially in animal-derived drugs. Thus, in this study, we used multi-source leeches, including Hirudo nipponica (HN), Whitmania pigra (WP), Whitmania acranulata (WA), and Poecilobdella manillensis (PM), as a model. A strategy integrating proteogenomics and novel pseudotargeted peptidomics was developed to characterize the natural peptide phenotype and screen for signature peptides of four leech species. First, natural peptides were sequenced against an in-house annotated protein database of closely related species constructed from RNA-seq data from the Sequence Read Archive (SRA) website, which is an open-sourced public archive resource. Second, a novel pseudotargeted peptidomics integrating peptide ion pair extraction and retention time transfer was established to achieve high coverage and quantitative accuracy of the natural peptides and to screen for signature peptides for species authentication. In all, 2323 natural peptides were identified from four leech species whose databases were poorly annotated. The strategy was shown to significantly improve peptide identification. In addition, 36 of 167 differential peptides screened by pseudotargeted proteomics were identified, and about one-third of them came from the leucine-rich repeat domain (LRR) proteins, which are widely distributed in organisms. Furthermore, six signature peptides were screened with good specificity and stability, and four of them were validated by synthetic standards. Finally, a dynamic multiple reaction monitoring (dMRM) method based on these signature peptides was established and revealed that one-half of the commercial samples and all of the Tongxinluo capsules were derived from WP. All in all, the strategy developed in this study was effective for natural peptide characterization and signature peptide screening, which could also be applied to other animal-derived drugs, especially for modelless species that are less studied in protein database annotation.


Assuntos
Sanguessugas , Proteogenômica , Animais , Sanguessugas/química , Sanguessugas/genética , Peptídeos/química , Proteômica
6.
J Nat Prod ; 86(2): 434-439, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36792549

RESUMO

Biscroyunoid A (1), a 19-nor-clerodane diterpenoid dimer featuring a unique C-16-C-12' linkage and containing an unusual 4,7-dihydro-5H-spiro[benzofuran-6,1'-cyclohexane] motif, together with its biosynthetic precursor, croyunoid A (2), were isolated from Croton yunnanensis. Their structures were determined by spectroscopic, computational, and single-crystal X-ray diffraction methods. Compound 1 exerted an antihepatic fibrosis effect in LX-2 cells via inhibition of TGFß-Smad2/3 signaling.


Assuntos
Croton , Diterpenos Clerodânicos , Diterpenos , Diterpenos Clerodânicos/química , Croton/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Diterpenos/química
7.
J Sep Sci ; 46(8): e2200792, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36779441

RESUMO

The processing of Traditional Chinese Medicine requires the appropriate parameters, while the specific chemical markers are still absent to obtain the optimized processing. In this study, we used vinegar-baked Euphorbia kansui as a case to dissect the chemical markers for the baking process using untargeted metabolomics. The robust chemical markers were selected based on the three rules, correlation, significant difference, and controllability. All the differential features were categorized based on their mass defects. After the differential analysis, 310 differential compounds were screened out and could be mainly divided into six categories: diacylglycerols and triacylglycerols demonstrated increasing trends with the baking time in the discriminant model, while ingenane-type diterpenes, jatrophane-type diterpenes, fatty acid esters, and fatty acids had decreasing trends. It was unexpected to find that the diterpenes did not correlate with the baking time. Only very few compounds meet the three rules. They were validated with a high-performance liquid chromatography method. Finally, only 13-Hydroxy-9,11-octadecadienoic acid and its isomer 9-Hydroxy-10,12-octadecadienoic acid could be used further to differentiate the commercial vinegar-baked Euphorbia kansui. It would be of interest to evaluate whether these two compounds could be utilized as markers to control more processing methods in future studies.


Assuntos
Diterpenos , Medicamentos de Ervas Chinesas , Euphorbia , Ácido Acético/química , Euphorbia/química , Medicina Tradicional Chinesa , Diterpenos/análise , Extratos Vegetais/química , Medicamentos de Ervas Chinesas/análise , Raízes de Plantas/química
8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108402

RESUMO

Jujube fruit was well-loved and praised by the broad masses due to its delicious taste, abundant nutritional value, and medicinal properties. Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides of jujube fruits from different producing areas. In the present study, multi-level fingerprint profiling, including polysaccharides, oligosaccharides, and monosaccharides, was established for the quality evaluation of polysaccharides from jujube fruits. For polysaccharides, the total content in jujube fruits ranged from 1.31% to 2.22%, and the molecular weight distribution (MWD) ranged from 1.14 × 105 to 1.73 × 106 Da. The MWD fingerprint profiling of polysaccharides from eight producing areas was similar, but the profile of infrared spectroscopy (IR) showed differentiation. The characteristic signals were screened and used to establish a discrimination model for the identification of jujube fruits from different areas, and the accuracy of identification reached 100.00%. For oligosaccharides, the main components were galacturonic acid polymers (DP, 2-4), and the profile of oligosaccharides exhibited high similarity. The monosaccharides, GalA, Glc, and Ara, were the primary monosaccharides. Although the fingerprint of monosaccharides was semblable, the composing proportion of monosaccharides revealed significant differences. In addition, the polysaccharides of jujube fruits could regulate the gut microbiota composition and possess potential therapeutic effects on dysentery and nervous system diseases.


Assuntos
Microbioma Gastrointestinal , Ziziphus , Frutas/química , Ziziphus/química , Polissacarídeos/química , Monossacarídeos
9.
Nat Prod Rep ; 39(4): 875-909, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35128553

RESUMO

Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Espectrometria de Massas , Panax/química , Panax/metabolismo , Controle de Qualidade , Saponinas/química
10.
Anal Bioanal Chem ; 414(17): 4999-5007, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35639139

RESUMO

Uncaria species (Rubiaceae) are used as traditional Chinese medicines (TCMs) to treat central nervous system (CNS) diseases, and monoterpene indole alkaloids are the main bioactive constituents. Localization and quantification of CNS drugs in fine brain regions are important to provide insights into their pharmacodynamics, for which quantitative mass spectrometry imaging (MSI) has emerged as a powerful technique. A systematic study of the quantitative imaging of seven Uncaria alkaloids in rat brains using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was presented. The distribution of the alkaloids in thirteen brain regions was quantified successfully using the calibration curves generated by a modified on-tissue approach. The distribution trend of different Uncaria alkaloids in the rat brain was listed as monoterpene indole alkaloids > monoterpene oxindole alkaloids, R-configuration epimers > S-configuration epimers. Particularly, Uncaria alkaloids were detected directly in the pineal gland for the first time and their enrichment phenomenon in this region had an instructive significance in future pharmacodynamic studies.


Assuntos
Alcaloides , Produtos Biológicos , Uncaria , Alcaloides/química , Animais , Encéfalo , Alcaloides Indólicos , Monoterpenos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Acta Pharmacol Sin ; 43(12): 3096-3111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229602

RESUMO

Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.


Assuntos
Produtos Biológicos , Espectrometria de Massas/métodos , Plantas , Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
J Sep Sci ; 45(4): 788-803, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894406

RESUMO

Fraxini Cortex has a long history of being used as a medicinal plant in traditional Chinese medicine. However, it is challenging to differentiate and make quality evaluations for Fraxini Cortex from different origins due to their similarities in morphological features, as well as general chemical composition using traditional chemical analytical methods. In this study, a simple and effective method was developed to identify Fraxini Cortex from different origins by multi-mode fingerprint combined with chemometrics. Digital images of the high-performance thin-layer chromatography profiles were converted to grayscale intensity, and the common patterns of high-performance thin-layer chromatography fingerprints were generated with ChemPattern software. Authentication and quality assessment were analyzed by similarity analysis, hierarchical cluster analysis, principal component analysis, and multivariate analysis of variance. The ultra-high-performance liquid chromatography fingerprints were analyzed by similarity analysis, principal component analysis, and orthogonal partial least square-discriminant analysis. When combined with chemometrics, high-performance thin-layer chromatography and ultra-high-performance liquid chromatography fingerprint provided a simple and effective method to evaluate the comprehensive quality of Fraxini Cortex, and to distinguish its two original medicinal materials (Fraxinus chinensis Roxb. and Fraxinus rhynchophylla Hance.) recorded in the Chinese Pharmacopeia and its three adulterants (Fraxinus mandschurica Rupr., Fraxinus pennsylvanica Marsh., and Juglans mandshurica Maxim.). A similar workflow may be applied to establish a differentiation method for other medicinal and economic plants.


Assuntos
Quimiometria , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Medicamentos de Ervas Chinesas/análise , Análise dos Mínimos Quadrados , Medicina Tradicional Chinesa , Análise de Componente Principal
13.
Biomed Chromatogr ; 36(12): e5496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36047933

RESUMO

Mahuang Xuanfei Zhike (MXZ) syrup, a Chinese patent medicine, has been widely used in the clinical treatment of cough. However, there is no reported method for the quantitative analysis of the effective components of MXZ syrup in biological samples. In this study, the effective components of MXZ syrup were screened by network pharmacology and molecular docking technology. A sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established to test the active components of MXZ syrup in rat plasma and tissue homogenates, including ephedrine, amygdalin, chlorogenic acid, harpagoside, forsythin and forsythoside A. Chromatographic separation was performed on a Waters Acquity UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm) and the mass analysis was conducted using a Waters Xevo TQ mass spectrometer using multiple reaction positive and negative ion simultaneous monitoring mode. The results showed that the linearity ranged from 0.3 to 409.4 ng/ml. The extraction recoveries were all <8.33%, and the matrix effects were all <8.45, which met the requirements. The pharmacokinetic and tissue distribution results indicated that the main active components of MXZ syrup were absorbed quickly and eliminated slowly in vivo, and there may be a reabsorption process.


Assuntos
Medicamentos de Ervas Chinesas , Ephedra sinica , Ratos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Tecidual , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacocinética
14.
Phytochem Anal ; 33(5): 766-775, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490700

RESUMO

INTRODUCTION: Achyranthes bidentata Blume (AB) has been used for a long time and is recorded in the Chinese Pharmacopoeia 2020 edition. It is commonly confused with Achyranthes aspera Linn (AA), Cyathula officinalis Kuan (CO) and Cyathula capitata (Wall.) Moq. (CC), belonging to the Achyranthes and Cyathula genera of the Amaranthaceae family. It is of great significance to recognize and distinguish chemical components of AB, AA, CO and CC. OBJECTIVE: The purpose of this study was to develop an analytical method for in-depth characterization and comparison of saponins in AB, AA, CO and CC. METHODS: The extracts of AB, AA, CO and CC were analyzed by an RP × RP (C18 × Phenyl-Hexyl) 2D LC system, eluted by acidic × ion pair mobile phases and detected by high resolution mass spectrometry. Fragmentation patterns of saponins were elucidated and proposed according to reference compounds or literature reports. RESULTS: As a result, 839 saponins consisting of 81, 415, 99 and 392 components corresponding to AB, AA, CO and CC, respectively, were characterized, including 594 potentially new saponins. Meanwhile, 29 kinds of aglycones were elucidated, among which 25 were new ones. Besides, 14, 91, 37 and 174 characteristic potential quality markers with MS intensities exceeding 10,000 were found in AB, AA, CO and CC, respectively. CONCLUSION: This comprehensive study not only expands our knowledge of the types of saponins in Achyranthes and Cyathula, but also reveals the differences among four kinds of analogous herbs (AB, AA, CO and CC), which facilitates the quality control of these herbal medicines in the future.


Assuntos
Achyranthes , Plantas Medicinais , Saponinas , Achyranthes/química , Espectrometria de Massas , Controle de Qualidade , Saponinas/química
15.
Molecules ; 27(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35408733

RESUMO

The complexity of metabolites in traditional Chinese medicine (TCM) hinders the comprehensive profiling and accurate identification of metabolites. In this study, an approach that integrates enhanced column separation, mass spectrometry post-processing and result verification was proposed and applied in the identification of flavonoids in Dalbergia odorifera. Firstly, column chromatography fractionation, followed by liquid chromatography-tandem mass spectrometry was used for systematic separation and detection. Secondly, a three-level data post-processing method was applied to the identification of flavonoids. Finally, fragmentation rules were used to verify the flavonoid compounds. As a result, a total of 197 flavonoids were characterized in D. odorifera, among which seven compounds were unambiguously identified in level 1, 80 compounds were tentatively identified by MS-DIAL and Compound Discoverer in level 2a, 95 compounds were annotated by Compound discoverer and Peogenesis QI in level 2b, and 15 compounds were exclusively annotated by using SIRIUS software in level 3. This study provides an approach for the rapid and efficient identification of the majority of components in herbal medicines.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Dalbergia/química , Medicamentos de Ervas Chinesas/análise , Flavonoides/química , Espectrometria de Massas , Medicina Tradicional Chinesa , Software
16.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684583

RESUMO

Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.


Assuntos
Ginsenosídeos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas , Ginsenosídeos/análise , Espectrometria de Massas/métodos
17.
Molecules ; 27(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897909

RESUMO

Nearly 5% of the Shenqi Fuzheng Injection's dry weight comes from the secondary metabolites of Radix codonopsis and Radix astragali. However, the chemical composition of these metabolites is still vague, which hinders the authentication of Shenqi Fuzheng Injection (SFI). Ultra-high performance liquid chromatography with a charged aerosol detector was used to achieve the profiling of these secondary metabolites in SFI in a single chromatogram. The chemical information in the chromatographic profile was characterized by ion mobility and high-resolution mass spectrometry. Polygonal mass defect filtering (PMDF) combined with Kendrick mass defect filtering (KMDF) was performed to screen potential secondary metabolites. A total of 223 secondary metabolites were characterized from the SFI fingerprints, including 58 flavonoids, 71 saponins, 50 alkaloids, 30 polyene and polycynes, and 14 other compounds. Among them, 106 components, mainly flavonoids and saponins, are contributed by Radix astragali, while 54 components, mainly alkaloids and polyene and polycynes, are contributed by Radix codonopsis, with 33 components coming from both herbs. There were 64 components characterized using the KMDF method, which increased the number of characterized components in SFI by 28.70%. This study provides a solid foundation for the authentification of SFIs and the analysis of its chemical composition.


Assuntos
Codonopsis , Medicamentos de Ervas Chinesas , Saponinas , Cefotaxima , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Mineração de Dados , Medicamentos de Ervas Chinesas/química , Flavonoides/química , Espectrometria de Massas , Polienos , Saponinas/química
18.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2109-2120, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531727

RESUMO

The chemical constituents of classical prescription Danggui Buxue Decoction were analyzed by reversed-phase(RP) chromatography and hydrophilic interaction chromatography(HILIC) coupled with quadrupole time-of-flight mass spectrometry. RP separation of Danggui Buxue Decoction was performed on ACQUITY UPLC HSS T3(2.1 mm×100 mm, 1.8 µm), while HILIC separation was on Waters BEH Amide(2.1 mm×100 mm, 1.7 µm). Mass spectrometry(MS) data were acquired in both negative and positive ion modes. Chemical constituents of Astragali Radix and Angelicae Sinensis Radix were searched from Reaxys and thus the in-house library was established. MS data were further analyzed by MassLynx 4.1 combined with in-house library, HMDB, Reaxys, and comparison with reference substances. In conclusion, a total of 154 compounds were identified and characterized: 16 saponins, 44 flavonoids, 10 phthalides, 7 phenylpropanoids, 15 bases and the corresponding nucleosides, 30 oligosaccharides, and 32 other compounds. Among them, 65 compounds were detected by HILIC-MS/MS. This study provides experimental evidences for the material basis research, quality control, and preparation development of Danggui Buxue Decoction and a reference method for comprehensive characterization of Chinese medicine decoctions typified by classical prescriptions.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Prescrições
19.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2121-2133, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531728

RESUMO

Based on the combination of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF) and Waters UNIFI software, the chemical constituents of the classic prescription Xiaochengqi Decoction were qualitatively analyzed and identified. The UPLC conditions are as follows: Acquity HSS T3 reverse phase column(2.1 mm ×100 mm, 1.8 µm), column temperature of 30 ℃, mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B), and flow rate of 0.3 mL·min~(-1). High-resolution MS data of Xiaochengqi Decoction were collected in ESI~(+/-) modes by Fast DDA. The structures of the chemical constituents were tentatively characterized or identified by UNIFI software according to the retention time of reference standards and characteristic fragment ions in MS profile, and literature data. A total of 233 components in Xiaochengqi Decoction were identified, with 93 from wine-processed Rhei Radix et Rhizoma, 104 from bran-processed Aurantii Fructus Immaturus, and 36 from ginger-processed Magnoliae Officinalis Cortex. These 233 components included anthraquinones, flavonoids, lignans, alkaloids, coumarins, and phenylethanoid glycosides. The result provided experimental evidence for the further study on establishment of quality standard and product development of the formula.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Rizoma/química , Software
20.
Med Res Rev ; 41(1): 630-703, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103257

RESUMO

Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.


Assuntos
Extratos Vegetais , Transdução de Sinais , Envelhecimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA