Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nat Chem Biol ; 19(12): 1504-1512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37443393

RESUMO

Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.


Assuntos
DNA Polimerase Dirigida por DNA , Saccharomyces cerevisiae , DNA Bacteriano , DNA Polimerase Dirigida por DNA/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Replicação do DNA , Bactérias/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(46): e2215141119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36367907

RESUMO

We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.

3.
BMC Cardiovasc Disord ; 24(1): 234, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702615

RESUMO

BACKGROUND: Insulin resistance (IR) can lead to cellular metabolic disorders, activation of oxidative stress, and endothelial dysfunction, contributing to in-stent restenosis (ISR). The triglyceride-glucose index (TyG index), a new indicator reflecting IR, is extensively researched in the cardiovascular field. This study, through a meta-analysis, aimed to utilize a larger combined sample size and thereby enhance the overall test efficacy to explore the TyG index-ISR relationship. METHODS: A thorough search was conducted in the PubMed, EMBASE, Web of Science, and Cochrane Library databases to find original papers and their references published between 1990 and January 2024. This search included both prospective and retrospective studies detailing the correlation between the TyG index and ISR in individuals with coronary heart disease (CHD). OUTCOMES: The five included articles comprised 3,912 participants, and the odds ratio (OR) extracted from each study was combined using the Inverse Variance method. Results showed that, in the context of CHD patients, each incremental unit in the TyG index, when treated as a continuous variable, corresponded to a 42% elevation in ISR risk (95% CI 1.26-1.59, I²=13%, p < 0.005). When analyzing the TyG index categorically, the results revealed a higher ISR risk in the highest TyG index group compared to the lowest group (OR: 1.69, 95% CI 1.32-2.17, I²=0). Additionally, in patients with chronic coronary syndrome (CCS), each unit increase in the TyG index, the risk of ISR in patients increased by 37% (95% CI 1.19-1.57, I²=0%, p < 0.005). This correlation was also observable in acute coronary syndrome (ACS) patients (OR:1.48, 95% CI 1.19-1.85, I²=0, p < 0.005). CONCLUSIONS: The TyG index, an economical and precise surrogate for IR, is significantly linked with ISR. Furthermore, this correlation is unaffected by the type of coronary heart disease.


Assuntos
Biomarcadores , Glicemia , Doença da Artéria Coronariana , Reestenose Coronária , Resistência à Insulina , Intervenção Coronária Percutânea , Stents , Triglicerídeos , Humanos , Biomarcadores/sangue , Glicemia/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/diagnóstico , Reestenose Coronária/sangue , Reestenose Coronária/etiologia , Reestenose Coronária/diagnóstico , Reestenose Coronária/diagnóstico por imagem , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/instrumentação , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Triglicerídeos/sangue
4.
Angew Chem Int Ed Engl ; : e202412173, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39205422

RESUMO

Aqueous Zn-ion batteries (AZIBs) are promising for the next-generation large-scale energy storage. However, the Zn anode remains facing challenges. Here, we report a cyclodextrin polymer (P-CD) to construct quasi-single ion conductor for coating and protecting Zn anodes. The P-CD coating layer inhibited the corrosion of Zn anode and prevented the side reaction of metal anodes. More important is that the cyclodextrin units enabled the trapping of anions through host-guest interactions and hydrogen bonds, forming a quasi-single ion conductor that elevated the Zn ion transference number (from 0.31 to 0.68), suppressed the formation of space charge regions and hence stabilized the plating/striping of Zn ions. As a result, the Zn//Zn symmetric cells coated with P-CD achieved a 70.6 times improvement in cycle life at high current densities of 10 mA cm-2 with 10 mAh cm-2. Importantly, the Zn//K1.1V3O8 (KVO) full-cells with high mass loading of cathode materials and low N/P ratio of 1.46 reached the capacity retention of 94.5% after 1000 cycles at 10 A g-1; while the cell without coating failed only after 230 cycles. These results provide novel perspective into the control of solid-electrolyte interfaces for stabilizing Zn anode and offer a practical strategy to improve AZIBs.

5.
Appl Opt ; 62(31): 8381-8389, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037943

RESUMO

We numerically investigate two Fano resonances with high Q-factors based on a permittivity-asymmetric metastructure composed of two pea-shaped cylinders. By employing different materials to break the permittivity-asymmetry, the quasi-bound state of the continuum spectrum (BIC) resonance at 982.87 nm is excited, showing the Q-factor as high as 8183.7. The electromagnetic fields and vectors are analyzed by using the finite-difference time-domain (FDTD) method, and the resonance modes are identified as magnetic dipole (MD) responses and MDs by multipole decomposition in Cartesian coordinates, displaying that the light is confined within a pea-shaped cylinder to achieve localized field enhancement. In addition, the sensing performances of the metastructure are evaluated, and an optical refractive index sensor can be obtained with the sensitivity of 152 nm/RIU and maximum figure of merit (FOM) of 832.6. This proposed structure offers a new, to the best of our knowledge, way to achieve Fano resonant excitation on all-dielectric metastructures and can be used in nonlinear optics, biosensing, optical switches, and lasers.

6.
J Fish Biol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009685

RESUMO

Assessing the nutritional status and identifying major causes of mortality in larvae experiencing varying degrees of starvation are crucial for establishing appropriate feeding protocols and enhancing the welfare of hatchery-reared fish. The black rockfish Sebastes schlegelii is an important species in aquaculture and stock enhancement efforts in China, Japan, and Korea. This study aimed to identify optimal diagnostic morphometric indicators of starvation in newly hatched (0-6 days post-hatch, DPH) and postlarval stages (27-37 DPH) of this valuable fish species through histological analyses. Our findings revealed that certain morphometric parameters, including body length, the ratios of eye diameter to head height, body height to body length, and abdomen height to body height, exhibit sensitivity to starvation during both larval and postlarval stages. Particularly, the ratios of body height to body length and abdomen height to body height emerged as the most sensitive morphometric indicators of starvation. Histological examinations of the digestive system revealed rapid alterations in the morphology of hepatic parenchymal cells, accompanied by a significant decrease in the number of lipid cells in the liver during episodes of food deprivation. Starvation induced cellular degeneration in the digestive organs, manifested by reduced heights of epithelial cells and mucosal layers in the intestine, oesophagus, and stomach, along with degeneration and separation of muscle fibers. Among these variables, the height of the intestinal submucosa and muscle layer emerged as the most sensitive indicators reflecting nutritional conditions in newly hatched larvae. In contrast, the height of intestinal striated borders and mucosal folds proved to be the most sensitive indicators in the postlarval stage. Furthermore, the height of intestinal epithelial cells and the number of lipid vacuoles in enterocytes exhibited high sensitivity to food deprivation in both newly hatched larvae and postlarvae. These findings underscore the varying resilience of fish to starvation during different developmental phases and highlight the utility of morphological sensitivity characteristics as reliable diagnostic indices for assessing nutritional status in relation to starvation or suboptimal feeding during the early developmental stages of black rockfish in hatchery-reared processes.

7.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047410

RESUMO

Plant cell surface-localized receptor-like kinases (RLKs) recognize invading pathogens and transduce the immune signals inside host cells, subsequently triggering immune responses to fight off pathogen invasion. Nonetheless, our understanding of the role of RLKs in wheat resistance to the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) remains limited. During the differentially expressed genes in Pst infected wheat leaves, a Leucine-repeat receptor-like kinase (LRR-RLK) gene TaBIR1 was significantly upregulated in the incompatible wheat-Pst interaction. qRT-PCR verified that TaBIR1 is induced at the early infection stage of Pst. The transient expression of TaBIR1-GFP protein in N. bentamiana cells and wheat mesophyll protoplasts revealed its plasma membrane location. The knockdown of TaBIR1 expression by VIGS (virus induced gene silencing) declined wheat resistance to stripe rust, resulting in reduced reactive oxygen species (ROS) production, callose deposition, and transcripts of pathogenesis-related genes TaPR1 and TaPR2, along with increased Pst infection area. Ectopic overexpression of TaBIR1 in N. benthamiana triggered constitutive immune responses with significant cell death, callose accumulation, and ROS production. Moreover, TaBIR1 triggered immunity is dependent on NbBAK1, the silencing of which significantly attenuated the defense response triggered by TaBIR1. TaBIR1 interacted with the NbBAK1 homologues in wheat, co-receptor TaSERK2 and TaSERK5, the transient expression of which could restore the impaired defense due to NbBAK1 silencing. Taken together, TaBIR1 is a cell surface RLK that contributes to wheat stripe rust resistance, probably as a positive regulator of plant immunity in a BAK1-dependent manner.


Assuntos
Basidiomycota , Triticum , Triticum/microbiologia , Leucina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Inata , Basidiomycota/genética , Doenças das Plantas/microbiologia
8.
Small ; 18(40): e2204140, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058641

RESUMO

The photoelastic effect has many uses in mechanics today, but it is usually disregarded in flexible materials. Using 2-phenoxyethyl acrylate as a monomer and 4-cyano-4'-pentylbiphenyl (5CB) as a solvent, a multiple responsive photoelastic organogel (PO) with strong birefringence but low modulus is created. 5CB is a liquid crystal molecule that does not participate in the polymerization process and is always present as tiny molecules in the polymer. It endows the PO low modulus and high birefringence, as well as the ability to drive the birefringence using an electric field. This PO not only has high sensitivity and fast response as a photoelastic strain sensor, but also has a very sensitive response to heat, especially in the range of human body temperature. It also has a high dielectric constant and a strong correlation between the interference color and the applied electric field, allowing for easy writing and erasure of encrypted data. This unique multisignal response feature and low modulus that mimics human skin bring up new opportunities in the potential applications such as multiple information encryption, anticounterfeiting, and multifunctional wearable sensors.


Assuntos
Cristais Líquidos , Acrilatos , Compostos de Bifenilo , Humanos , Cristais Líquidos/química , Nitrilas , Polímeros , Solventes
9.
J Exp Bot ; 73(7): 2157-2174, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34849734

RESUMO

Thermosensitive genic male sterile (TGMS) wheat lines are the core of two-line hybrid systems. Understanding the mechanism that regulates male sterility in TGMS wheat lines is helpful for promoting wheat breeding. Several studies have obtained information regarding the mechanisms associated with male sterility at the transcriptional level, but it is not clear how the post-transcriptional process of alternative splicing might contribute to controlling male sterility. In this study, we performed genome-wide analyses of alternative splicing during the meiosis stage in TGMS line BS366 using PacBio and RNA-Seq hybrid sequencing. Cytological observations indicated that cytoskeleton assembly in pollen cells, calcium deposition in pollen and tapetal cells, and vesicle transport in tapetal cells were deficient in BS366. According to our cytological findings, 49 differentially spliced genes were isolated. Moreover, 25 long non-coding RNA targets and three bHLH transcription factors were identified. Weighted gene co-expression network analysis detected four candidate differentially spliced genes that had strong co-relation with the seed setting percentage, which is the direct representation of male sterility in BS366. In this study, we obtained comprehensive data regarding the alternative splicing-mediated regulation of male sterility in TGMS wheat. The candidates identified may provide the molecular basis for an improved understanding of male sterility.


Assuntos
Melhoramento Vegetal , Triticum , Processamento Alternativo , Fertilidade , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Infertilidade das Plantas/genética , Triticum/genética
10.
Biofouling ; 38(8): 747-763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36224109

RESUMO

Biofouling is a problem affecting the operation of nanofiltration systems due to the complexity of the carbon matrix affecting bacteria and biofilm growth. This study used membrane fouling simulators to investigate the effects of five different carbon sources on the biofouling of nanofiltration membranes. For all the carbon sources analyzed, the increase in pressure drop was most accelerated for acetate. The use of acetate as the single carbon source produced less adenosine triphosphate but more extracellular polymers than glucose. The microbial community was analyzed using 16 s rRNA. The use of more than a single carbon source produced an increase in bacteria diversity even at similar concentrations. The relative abundance of proteobacteria was the highest at the phylum level (95%) when a single carbon source was added. Additionally, it was found that the use of different carbon sources produced a shift in the microbial community, affecting the biofouling and pressure drop on membranes.


Assuntos
Incrustação Biológica , Microbiota , Purificação da Água , Carbono , Membranas Artificiais , Biofilmes , Bactérias/genética , Acetatos
11.
BMC Musculoskelet Disord ; 23(1): 295, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346154

RESUMO

PURPOSE: To assess the preoperative planning of visualized simulative surgery (VSS) and clinical outcomes based on computer-aided design (CAD) and 3D reconstruction for proximal femoral varus osteotomy of DDH. METHODS: A total of 31 consecutive patients (23 females and 8 males) with DDH who underwent proximal femoral varus osteotomy were retrospectively reviewed between June 2014 and July 2018. Patients were divided into conventional group (n = 15) and VSS group (n = 16) according to different surgical methods. In VSS group, 16 consecutive patients who underwent proximal femoral varus osteotomy were evaluated preoperatively with the aid of VSS. The VSS steps included morphological evaluation of DDH, simulated reconstruction of proximal femoral varus osteotomy, and the implantation of locking compression pediatric hip plate (LCP-PHP). Meanwhile, the osteotomy degrees, surgery time, and radiation exposure were compared between the two groups. RESULTS: The average follow-up time was 33.5 months (range, 24 to 46 months). The varus angle for proximal femoral varus osteotomy was 24.2 ± 1.1° in VSS group and 25.1 ± 1.0° in conventional group (P = 0.4974). The surgery time was 31.0 ± 4.5 mins in VSS group and 48.2 ± 7.3 mins in conventional group, while radiography was 5.0 ± 1.5 times in VSS group and 8.3 ± 2.4 times in conventional group. There was a statistical significance in surgery time and radiography (P <  0.0001) when compared with the conventional group. CONCLUSION: The VSS can greatly decrease surgery time and radiation exposure for proximal femoral varus osteotomy, which could also be a tool to train young doctors to improve surgical skills and academic communication.


Assuntos
Fêmur , Osteotomia , Criança , Simulação por Computador , Feminino , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Masculino , Osteotomia/métodos , Radiografia , Estudos Retrospectivos
12.
J Fish Biol ; 101(3): 711-721, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751413

RESUMO

The social environment can affect the development of behavioural phenotypes in fish, and it is important to understand such effects when rearing fish in artificial environments. Here, the authors test the effects of spatial isolation on social interaction propensity and brain development in hatchery-reared Atlantic salmon Salmo salar L. Salmon reared in isolation generally stayed further away from a conspecific in a standardized intruder test than conspecifics reared together in groups. Isolated salmon also tended to be more active in an intruder test, albeit non-significantly so, but this pattern was not detected in open-field tests without an intruding conspecific. The cerebellar brain region was relatively smaller in isolated salmon, suggesting that the brain was developing differently in these fish. Therefore, some features of the behavioural and neural phenotype are affected by rearing in isolation. These effects should be considered when rearing salmon, particularly for experimental purposes as it may affect results of laboratory studies on behavioural expression and brain size.


Assuntos
Salmo salar , Animais , Encéfalo , Isolamento Social
13.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683004

RESUMO

Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA-ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.


Assuntos
MicroRNAs , Triticum , Celulose/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Melhoramento Vegetal , Pólen/metabolismo , Triticum/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(12): 3068-3073, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265079

RESUMO

Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

15.
BMC Genomics ; 20(1): 1032, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888472

RESUMO

BACKGROUND: MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. RESULTS: 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. CONCLUSIONS: This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.


Assuntos
Genes myc , Genoma de Planta , Genômica , Família Multigênica , Triticum/genética , Alelos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Triticum/classificação
16.
Phys Rev Lett ; 123(11): 116601, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573250

RESUMO

Fermi gases in two dimensions display collective dynamics originating from head-on collisions, a collinear carrier scattering process that dominates angular relaxation at not-too-high temperatures T≪T_{F}. In this regime, a large family of excitations emerges, with an odd-parity angular structure of momentum distribution and exceptionally long lifetimes. This leads to "tomographic" dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of timescales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling versus sample width.

17.
ChemSusChem ; 17(6): e202301586, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38168109

RESUMO

Organic electrode materials (OEMs) have been well developed in recent years. However, the practical applications of OEMs have not been paid sufficient attention. The concept here focused on one of the essential aspects for practical applications, i. e., high mass loading of active materials. This paper summarizes the challenges posed by high-mass loading of active materials in organic batteries and discusses the possible solutions in terms of organic electrode materials, conductive additives, electrode structures, and electrolytes or battery systems. We hope this concept can stimulate more attention to practical applications of organic batteries towards industry from lab.

18.
Rev Neurosci ; 35(6): 697-707, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38738975

RESUMO

Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.


Assuntos
Encéfalo , Função Executiva , Obesidade , Sobrepeso , Recompensa , Humanos , Função Executiva/fisiologia , Obesidade/fisiopatologia , Obesidade/psicologia , Sobrepeso/fisiopatologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Imageamento por Ressonância Magnética
19.
Biomater Transl ; 5(1): 33-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220664

RESUMO

Drug therapy towards tumours often causes adverse effects because of their non-specific nature. Membrane-coated technology and membrane-coated nanoparticles provide an advanced and promising platform of targeted and safe delivery. By camouflaging the nanoparticles with natural derived or artificially modified cell membranes, the nano-payloads are bestowed with properties from cell membranes such as longer circulation, tumour or inflammation-targeting, immune stimulation, augmenting the performance of traditional therapeutics. In this review, we review the development of membrane coating technology, and summarise the technical details, physicochemical properties, and research status of membrane-coated nanoparticles from different sources in tumour treatment. Finally, we also look forward to the prospects and challenges of transforming membrane coating technology from experiment into clinical use. Taken together, membrane-coated nanoparticles are bound to become one of the most potential anti-tumour strategies in the future.

20.
ACS Appl Mater Interfaces ; 16(25): 32411-32424, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865596

RESUMO

Introducing auxetic metamaterials into stretchable electronics shows promising prospects for enhancing the performance and innovating the functionalities of various devices, such as stretchable strain sensors. Nevertheless, most existing auxetics fail to meet the requirement of stretchable electronics, which typically include high mechanical flexibility and stable Poisson's ratio over large deformations. Moreover, despite being highly advantageous for application in diverse load-bearing conditions, achieving tunability of J-shaped stress-strain response independent of negative Poisson's ratio remains a significant challenge. This paper introduces a class of hybrid-microstructure-based soft network materials (HMSNMs) consisting of different types of microstructures along the loading and transverse directions. The J-shaped stress-strain curve and nonlinear Poisson's ratio for HMSNMs can be tuned independently of each other. The HMSNM provides much higher strength than the corresponding existing metamaterial while offering a nearly stable negative Poisson's ratio over large strains. Both mechanical properties under infinitesimal and large deformations can be well-tuned by geometric parameters. Fascinating functionalities such as shape programming and stress regulation are achieved by integrating a set of HMSNMs in series/parallel configurations. A stretchable LED-integrated display capable of displaying dynamic images without distortion under uniaxial stretching serves as a demonstrative application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA