Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Environ Res ; 242: 117658, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979929

RESUMO

Enzymatic hydrolysis is an essential step in the lignocellulosic biorefining process. In this paper, Box-Behnken was used to optimize the enzymatic hydrolysis process of corn stalk, and the promotion effect of three typical surfactants on the enzymatic hydrolysis process was investigated. The experimental results showed that the total reducing sugar yield reached 67.6% under the best-predicted conditions. When the concentration of Tween 80 is 0.1%, it could be increased to 80.2%. In addition, the Impeded Michaels Model (IMM) is introduced in this study to describe the enzymatic hydrolysis process of corn stalks. Finally, the initial contact coefficient between the enzyme and cellulose (Kobs,0) and the gradual loss coefficient of enzyme activity (ki) caused by reaction obstruction were obtained by fitting data, which successfully verified the rationality of the model.


Assuntos
Celulose , Zea mays , Polissorbatos , Hidrólise , Tensoativos
2.
BMC Neurol ; 23(1): 314, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658347

RESUMO

BACKGROUND: Chronic lymphoproliferative disorders of natural killer cells (CLPD-NK) is a rare lymphoproliferative disease. Peripheral neuropathy is an unusual symptom of CLPD-NK. We report a case of peripheral neuropathy associated with CLPD-NK and perform a review of literatures. CASE PRESENTATION: a 62-year-old woman presented with progressive numbness and weakness in both extremities. Electrophysiological examinations indicated a sensorimotor polyneuropathy. Peripheral blood examination revealed that the number of white blood cells (WBC) and lymphocytes were significantly increased. Flow cytometry analysis identified that 84% of the lymphocytes are NK cells that mainly expressed CD56, combined with variable expression of CD16, CD2, CD7, CD94, granzyme B, perforin, and CD158 but negative for CD3. Sural nerve biopsy revealed that a plethora of NK cells infiltrated into nerve fascicles. On treatment with combined cyclophosphamide and corticosteroids, her symptoms rapidly improved. Moreover, the absolute lymphocyte count and its proportion recovered to normal range after 3 months' treatment. CONCLUSION: To the best of our knowledge, this is the first case report of peripheral neuropathy associated with CLPD-NK from Chinese. This rare lymphoproliferative disease should be considered if peripheral neuropathy combines with increased WBC or lymphocytes. Immunosuppressive drugs are the major treatment and most patients can achieve a good prognosis.


Assuntos
Linfoma de Células T Periférico , Neoplasias , Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Feminino , Pessoa de Meia-Idade , Células Matadoras Naturais , Doenças do Sistema Nervoso Periférico/etiologia
3.
Environ Res ; 235: 116592, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423365

RESUMO

Sulfuric acid modifies the biochar derived from corn cobs, stalks, and reeds. Amongst the modified biochar, corn cobs-biochar has the highest BET (101.6 m2 g-1), followed by reeds-biochars (96.1 m2 g-1). The Na+ adsorption capacities for pristine biochars are corn cobs-pristine biochar: 24.2 mg g-1, corn stalks-pristine biochar: 7.6 mg g-1, and reeds-pristine biochar: 6.3 mg g-1, relatively low for field applications. The acid-modified corn cobs biochar has a superior Na+ adsorption capacity of up to 221.1 mg g-1, much higher than literature reports and the other two tested biochars. This corn cobs-modified biochar has also a satisfactory Na+ adsorption capacity (193.1 mg g-1) from actual water collected from a sodium-contaminated city, Daqing, China. The FT-IR spectroscopy and XPS spectrum reveal that the embedded surface -SO3H groups onto the biochar correlate with its superior Na + adsorption, attributable to the ion exchange mechanisms. The biochar surface accessible to sulfonic group grafting can generate a superior Na+ adsorbing surface, which is for the first time reported and has great application potential for the remediation of sodium-contaminated water.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Espectroscopia de Infravermelho com Transformada de Fourier , Carvão Vegetal/química , Adsorção , Água , Poluentes Químicos da Água/análise
4.
Environ Res ; 223: 115462, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773643

RESUMO

To explore an effective, environmental, rapid operating method to repair black and odor water bodies, water samples and sediment samples collected from a polluted municipal lake in Daqing, China, were directly tested in transparent barrels (10 L). Seven groups of optimizing parameters obtained the optimal operating method, and the max removal rate of COD, NH4+-N, NO3--N, and TP were achieved (89.18%, 59.65%, 69.50%, and 75.61%) by using aquatic plants with plant growth-promoting Rhizobacteria (PGPR). To further verify the method's effectiveness, lager scale tests were conducted based on a water tank (216 L), and similar removal rates were obtained within 48 h. The water quality index and microbial community structure analysis revealed the mechanisms of the interaction among plants, microorganisms, and pollutants and the main biological processes during water body remediation. Finally, the cost of water body remediation by using this method was estimated.


Assuntos
Lagos , Odorantes , Biodegradação Ambiental , Qualidade da Água , Plantas , Nitrogênio/análise
5.
J Integr Neurosci ; 21(5): 125, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36137966

RESUMO

OBJECTIVE: This study aimed to explore the diagnostic points and treatment modes of the clinical characteristics of Japanese encephalitis (JE) in the middle-aged and elderly population. METHODS: Six patients aged 47-72 who were diagnosed with JE at the Beijing Chaoyang Hospital Affiliated with the Capital Medical University between August 2018 and September 2019 were enrolled in the study. Their clinical manifestations, biochemical indicators, imaging data, diagnostic methods, and the evolution and outcomes of the treatments they underwent were retrospectively analyzed. RESULTS: (1) All six patients had severe clinical symptoms and poor prognoses that were more likely to be associated with other systemic diseases. (2) Lesions were most commonly distributed in the thalamus, basal ganglia, and midbrain. The appearance of hyperintensity in the corpus callosum, hippocampus, and subcortical white matter was more specific. The hyperperfusion metabolism in the lesion area in head computed tomography perfusion imaging indicated the state of inflammatory activity in the lesion. In cranial magnetic resonance imaging (MRI), T2 and fluid-attenuated inversion recovery (FLAIR) were more sensitive. (3) After a patient has been systematically treated in the intensive care unit (ICU), the patient gradually recovered and the level of consciousness improved (p < 0.05). CONCLUSIONS: In brain MRI-especially T2 and FLAIR-intracranial infection is often accompanied by abnormal signals in the thalamus, midbrain, hippocampus, and white matter hyperintensity (WMH), which is highly suggestive of JE. The positive detection of anti-JE virus immunoglobulin M antibodies in a patient's serum and/or cerebrospinal fluid can confirm the diagnosis of JE, and comprehensive ICU treatment (hormones combined with anti-inflammatory, antiviral, and mild hypothermic cerebral protection therapies) can improve the survival rate.


Assuntos
Encefalite Japonesa , Adulto , Idoso , Antivirais , Encefalite Japonesa/diagnóstico por imagem , Encefalite Japonesa/terapia , Hormônios , Humanos , Imunoglobulina M , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Exp Cell Res ; 397(1): 112311, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991874

RESUMO

Colorectal cancer (CRC) is one of the most commonly diagnosed tumors among human worldwide. Angiogenesis and tumor-associated macrophage (TAM) recruitment are closely associated with CRC development. Nevertheless, the mechanisms revealing CRC progression are still not fully understood. 5'-Nucleotidase domain containing 2 (NT5DC2), a member of the NT5DC family, modulates various cellular events to mediate tumor growth, and thus serves as a disgnostic biomarker. Here, we explored the potential of NT5DC2 on tumor progression in CRC. We first found that NT5DC2 expression was significantly up-regulated in CRC tissues and cell lines. CRC patients with higher NT5DC2 expression showed poor overall survival. Furthermore, CRC cell lines stably transfected with shNT5DC2 lentivirus plasmids exhibited markedly reduced cell proliferation, migration and invasion compared with the negative control group. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) expression levels were remarkably reduced in CRC cells with NT5DC2 deletion, along with evidently reduced tube formation in the HUVECs cultured in the collected conditional medium. The expression levels of CC chemokine ligand 2 (CCL2) and its receptor CCR2 were found to be greatly down-regulated in CRC cells transfected with shNT5DC2. Moreover, NT5DC2 knockdown markedly suppressed the activation of protein kinase-B/nuclear transcription factor κB (AKT/NF-κB) signaling in CRC cells. Furthermore, we found that NT5DC2 deletion obviously reduced the TAM recruitments through suppressing CCL2/CCR2 and AKT/NF-κB signaling pathways. Intriguingly, our in vitro experiments demonstrated that VEGF reduction was necessary for shNT5DC2-inhibited cell proliferation, migration, invasion, angiogenesis and TAM recruitment. In vivo studies also confirmed that NT5DC2 knockdown effectively reduced the tumor growth and VEGF expression in a xonegraft mouse model with CRC. Lung metastasis of CRC cells was also hindered by NT5DC2 deletion in vivo. Collectively, our results indicated a previously unrecognized NT5DC2/VEGF/CCL2 axis involved in CRC development and metastasis.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Neoplasias Colorretais/prevenção & controle , Neoplasias Pulmonares/prevenção & controle , Neovascularização Patológica/prevenção & controle , Macrófagos Associados a Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Macrófagos Associados a Tumor/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Cell Physiol ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33111341

RESUMO

Osteoporosis is one of the most prevailing orthopedic diseases that causes a heavy burden on public health. Given that bone marrow-derived mesenchymal stem cells (BMSCs) are of immense importance in osteoporosis development, it is necessary to expound the mechanisms underlying BMSC osteoblastic differentiation. Although mounting research works have investigated the role of small nucleolar RNA host gene 5 (SNHG5) in various diseases, elucidations on its function in osteoporosis are still scarce. It was observed that SNHG5 and RUNX family transcription factor 3 (RUNX3) were remarkably elevated during osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Further, we disclosed that the silencing of SNHG5 suppressed osteogenic differentiation and induced apoptosis of hBMSCs. What's more, SNHG5 acted as a competing endogenous RNA to affect RUNX3 expression via competitively binding with microRNA (miR)-582-5p. RUNX3 was also confirmed to simulate the transcriptional activation of SNHG5. Finally, our findings manifested that the positive feedback loop of SNHG5/miR-582-5p/RUNX3 executed the promoting role in the development of osteoporosis, which shed light on specific molecular mechanism governing SNHG5 in osteogenic differentiation and apoptosis of hBMSCs and indicated that SNHG5 may represent a novel target for the improvement of osteoporosis therapy.

8.
Ann Surg Oncol ; 27(8): 2812-2821, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32040699

RESUMO

BACKGROUND: Most previous risk-prediction models for gastrointestinal stromal tumors (GISTs) were based on Western populations. In the current study, we collected data from 23 hospitals in Shandong Province, China, and used the data to examine prognostic factors in Chinese patients and establish a new recurrence-free survival (RFS) prediction model. METHODS: Records were analyzed for 5285 GIST patients. Independent prognostic factors were identified using Cox models. Receiver operating characteristic curve analysis was used to compare a novel RFS prediction model with current risk-prediction models. RESULTS: Overall, 4216 patients met the inclusion criteria and 3363 completed follow-up. One-, 3-, and 5-year RFS was 94.6% (95% confidence interval [CI] 93.8-95.4), 85.9% (95% CI 84.7-87.1), and 78.8% (95% CI 77.0-80.6), respectively. Sex, tumor location, size, mitotic count, and rupture were independent prognostic factors. A new prognostic index (PI) was developed: PI = 0.000 (if female) + 0.270 (if male) + 0.000 (if gastric GIST) + 0.350 (if non-gastric GIST) + 0.000 (if no tumor rupture) + 1.259 (if tumor rupture) + 0.000 (tumor mitotic count < 6 per 50 high-power fields [HPFs]) + 1.442 (tumor mitotic count between 6 and 10 per 50 HPFs) + 2.026 (tumor mitotic count > 10 per 50 HPFs) + 0.096 × tumor size (cm). Model-predicted 1-, 3-, and 5-year RFS was S(12, X) = 0.9926exp(PI), S(36, X) = 0.9739exp(PI) and S(60, X) = 0.9471exp(PI), respectively. CONCLUSIONS: Sex, tumor location, size, mitotic count, and rupture were independently prognostic for GIST recurrence. Our RFS prediction model is effective for Chinese GIST patients.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , China/epidemiologia , Feminino , Tumores do Estroma Gastrointestinal/cirurgia , Humanos , Masculino , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Retrospectivos
9.
Cancer Cell Int ; 20(1): 580, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33292253

RESUMO

BACKGROUND: Despite an enormous research effort, patients diagnosed with advanced colorectal cancer (CRC) still have low prognosis after surgical resection and chemotherapy. The major obstacle for CRC treatment is chemoresistance to front line anti-cancer drugs, such as 5-fluorouracil (5-FU) and oxaliplatin. However, the mechanism of chemoresistance to these drugs remains unclear. METHODS: Cell viability to 5-FU and oxaliplatin was measured by the CellTiter-Glo® 2.0 Cell Viability Assay. The endogenous REV7 protein in CRC cells was detected by western blotting. The translesion synthesis (TLS) events were measured by plasmid-based TLS efficiency assay. Cell apoptosis was evaluated by caspase3/7 activity assay. The in vivo tumor progression was analyzed by HT29 xenograft mice model. RESULTS: In this study, we found that expression of REV7, which is a key component of translesion synthesis (TLS) polymerase ζ (POL ζ), is significantly increased in both 5-FU and oxaliplatin resistant CRC cells. TLS efficiency analysis revealed that upregulated REV7 protein level results in enhanced TLS in response to 5-FU and oxaliplatin. Importantly, inhibition of REV7 by CRISPR/Cas9 knockout exhibited significant synergy with 5-FU and oxaliplatin in cell culture and murine xenograft model. CONCLUSION: These results suggest that combination of REV7 deficiency and 5-FU or oxaliplatin has strong inhibitory effects on CRC cells and identified REV7 as a promising target for chemoresistant CRC treatment.

10.
Biol Res ; 51(1): 16, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880026

RESUMO

BACKGROUND: Stathmin as a critical protein involved in microtubule polymerization, is necessary for survival of cancer cells. However, extremely little is known about Stathmin in glioblastoma. So, this study was designed to elucidate the function of Stathmin gene in the tumorigenesis and progression of glioblastoma cells. METHOD: The lentiviral interference vector pLV3-si-Stathmin targeting Stathmin gene and the control vector pLV3-NC were established for the co-transfection of 293T cells together with the helper plasmids. Viral titer was determined via limiting dilution assay. Then pLV3-si-Stathmin and pLV3-NC were stably co-transfected into U373 and U87-MG glioblastoma cells. Expression levels of Stathmin protein in each group were determined by using Western Blot, and the proliferation and migration ability of the cells with downregulated Stathmin were evaluated through CCK8 assay and transwell invasion assay, respectively. Cell cycles and cell apoptosis were detected with flow cytometry. Finally, the effect of Stathmin in tumor formation was determined in nude mice. RESULT: DNA sequencing and viral titer assay indicated that the lentiviral interference vector was successfully established with a viral titer of 4 × 108 TU/ml. According to the results from Western Blotting, Stathmin protein expression level decreased significantly in the U373 and U87-MG cells after transfected with pLV3-si-Stathmin, respectively, compared with those transfected with pLV3-NC. In glioblastoma cells, the cell proliferation and migration were greatly inhibited after the downregulation of Stathmin protein. Flow cytometry showed that much more cells were arrested in G2/M phasein Stathmin downregulated group, compared with the non-transfection group and NC group. But Stathmin downregulation did not induce significant cell apoptosis. Tumor formation assay in nude mice showed that tumor formation was delayed after Stathmin downregulation, with a reduction in both tumor formation rate and tumor growth velocity. CONCLUSION: Stathmin downregulation affected the biological behaviors of U373 and U87-MG glioblastoma cells, inhibiting the proliferation and migration of tumor cells. Stathmin gene may serve as a potential target in gene therapy for glioblastoma.


Assuntos
Proliferação de Células/genética , Regulação para Baixo/genética , Glioblastoma/metabolismo , Estatmina/genética , Animais , Linhagem Celular Tumoral , Vetores Genéticos , Glioblastoma/genética , Glioblastoma/patologia , Camundongos , Estatmina/metabolismo , Transfecção
11.
Nutr Neurosci ; 19(6): 231-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25822813

RESUMO

OBJECTIVE: Sesamin is known for its role in antioxidant, antiproliferative, antihypertensive, and neuroprotective activities. However, little is known about the role of sesamin in the development of emotional disorders. Here we investigated persistent inflammatory pain hypersensitivity and anxiety-like behaviors in the mouse suffering chronic pain. METHODS: Chronic inflammatory pain was induced by hind paw injection of complete Freund's adjuvant (CFA). Levels of protein were detected by Western blot. RESULTS: Administration of sesamin could induce anxiolytic activities but had no effect on analgesia. In the basolateral amygdala, a structure involving the anxiety development, sesamin attenuated the up-regulation of NR2B-containing N-methyl-d-aspartate receptors, GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor as well as phosphorylation of GluR1 at Ser831 (p-GluR1-Ser831), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII-alpha) in the hind paw CFA-injected mice. In the same model, we found that the sesamin blocked the down-regulation of gamma-aminobutyric acid A (GABAA-alpha-2) receptors. CONCLUSION: Our findings show that sesamin reduces anxiety-like behaviors induced by chronic pain at least partially through regulating the GABAergic and glutamatergic transmission in the amygdala of mice.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/prevenção & controle , Complexo Nuclear Basolateral da Amígdala/metabolismo , Dor Crônica/fisiopatologia , Dioxóis/uso terapêutico , Modelos Animais de Doenças , Lignanas/uso terapêutico , Neurite (Inflamação)/fisiopatologia , Animais , Ansiedade/etiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Dor Crônica/etiologia , Dor Crônica/psicologia , Suplementos Nutricionais , Adjuvante de Freund/toxicidade , Temperatura Alta/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/etiologia , Hiperalgesia/imunologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/etiologia , Neuralgia/fisiopatologia , Neuralgia/psicologia , Neurite (Inflamação)/induzido quimicamente , Neurite (Inflamação)/etiologia , Neurite (Inflamação)/imunologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Pressão/efeitos adversos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
12.
Phytother Res ; 30(3): 386-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26643508

RESUMO

Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 µM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 µM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS.


Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Álcoois Benzílicos/farmacologia , Gastrodia/química , Glucosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Proteína Beclina-1 , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Rizoma , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
Int J Mol Sci ; 17(3): 346, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27005614

RESUMO

Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.


Assuntos
Regulação da Expressão Gênica de Plantas , Hosta/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fertilizantes , Regulação da Expressão Gênica no Desenvolvimento , Hosta/fisiologia , Nitrogênio , Proteômica
14.
J Cell Mol Med ; 19(3): 535-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534115

RESUMO

Inactivation of p53-mediated cell death pathways is a central component of cancer progression. ASPP2 (apoptosis stimulated protein of p53-2) is a p53 binding protein that specially stimulates pro-apoptosis function of p53. Down-regulation of ASPP2 is observed in many human cancers and is associated with poor prognosis and metastasis. In this study, ASPP2 was found to enhance L-OHP-induced apoptosis in HCT116 p53(-/-) cells in a p53-independent manner. Such apoptosis-promoting effect of ASPP2 was achieved by inhibiting autophagy. Further experiments with ASPP2 RNA interference and autophagy inhibitor (3-methyladenine, 3-MA) confirmed that ASPP2 enhanced HCT116 p53(-/-) cell apoptosis via inhibiting the autophagy. The association of cell death and autophagy was also found in ASPP2(+/-) mice, where colon tissue with reduced ASPP2 expression displayed more autophagy and less cell death. Finally, colorectal tumours and their adjacent normal tissues from 20 colorectal cancer patients were used to examine ASPP2 expression, p53 expression and p53 mutation, to understand their relationships with the patients' outcome. Three site mutations were found in p53 transcripts from 16 of 20 patients. ASPP2 mRNA expressions were higher, and autophagy level was lower in the adjacent normal tissues, compared with the tumour tissues, which was independent of both p53 mutation and expression level. Taken together, ASPP2 increased tumour sensitivity to chemotherapy via inhibiting autophagy in a p53-independent manner, which was associated with the tumour formation, suggesting that both p53 inactivation and ASPP2 expression level were involved in the sensitivity of colorectal cancer to chemotherapy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação/genética , Oxaliplatina , Interferência de RNA , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/genética
15.
Mol Pain ; 11: 16, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25889665

RESUMO

The activation of Translocator protein (18 kDa) (TSPO) has been demonstrated to mediate rapid anxiolytic efficacy in stress response and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids that promote γ-aminobutyric acid (GABA)-mediated neurotransmission in the central neural system. However, little is known about the functions and the underlying mechanisms of TSPO in chronic pain-induced anxiety-like behaviors. The novel TSPO ligand N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was used in the present study. We found that ZBD-2 (0.15 or 1.5 mg/kg) significantly attenuated anxiety-like behaviors in mice with chronic inflammatory pain induced by hindpaw injection of complete Freund's adjuvant (CFA). However, the treatment did not alter the nociceptive threshold or inflammation in the hindpaw. Hindpaw injection of CFA induced the upregulation of TSPO, GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and NR2B-containing N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala (BLA). ZBD-2 administration reversed the alterations of the abovementioned proteins in the BLA of the CFA-injected mice. Electrophysiological recording revealed that ZBD-2 could prevent an imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected mice. Therefore, as the novel ligand of TSPO, ZBD-2 induced anxiolytic effects, but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of ZBD-2 were related to the regulation of the balance between excitatory and inhibitory transmissions in the BLA.


Assuntos
Acetamidas/metabolismo , Ansiolíticos/farmacologia , Dor Crônica/tratamento farmacológico , Purinonas/metabolismo , Receptores de GABA/metabolismo , Sinapses/metabolismo , Animais , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Adjuvante de Freund/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Transmissão Sináptica
16.
IUBMB Life ; 67(3): 191-201, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25873402

RESUMO

Chemoresistance of colon cancer cells to the chemotherapeutics is still a main obstacle in treatment of this malignancy. The microRNA (miRNA) mediated chemosensitivity regulation in colon cancer cells is still largely unknown. Here we constructed a fluorouracil (5-Fu) resistant SW480 cell line (SW480/5-Fu) and discovered that miRNA miR-494 was down-regulated in the drug resistant cells compared with the parental cells. miR-494 level was found to be correlated with 5-Fu sensitivity in colon cancer cells, and artificial alteration of miR-494 affects the sensitivity of colon cancer cell lines to 5-Fu. miR-494 also promoted apoptosis of colon cancer cells at present of 5-Fu. Importantly, as a regulatory enzyme in the 5-Fu catabolic pathway, DPYD was confirmed to be a direct target of miR-494 through the interaction of miR-494 and its binding site within DPYD 3' untranslated region (3'UTR). miR-494 also negatively regulated endogenous DPYD expression in SW480 cells. Overexpression or knockdown of DPYD could attenuate miR-494 mediated 5-Fu sensitivity regulation, suggesting the dependence of DPYD regulation in miR-494 activity. miR-494 inhibited SW480/5-Fu derived xenograft tumors growth in vivo at present of 5-Fu. Thus, we concluded that in colon cancer cells, tumor suppressor miR-494 enhanced 5-Fu sensitivity via regulation of DPYD expression.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias do Colo/patologia , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Nus , MicroRNAs/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Neurovirol ; 21(5): 500-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26015313

RESUMO

With the wide application of combined antiretroviral therapy, the prognosis of human immunodeficiency virus (HIV)-1 infected patient has been significantly improved. However, long-term administration of antiretroviral drugs can result in various drug-associated toxicities. Among them, nucleoside analogues were confirmed to inhibit DNA polymerase gamma, resulting in mitochondrial toxicity. Our previous study indicated that long-term exposure of mice to nucleoside analogue could induce mitochondria DNA (mtDNA) loss in cortical neurons. Herein, we further identify mitochondrial toxicity of four nucleoside analogues (zidovudine (AZT), stavudine (D4T), lamivudine (3TC), and didanosine (DDI)) by cloning and sequencing mtDNA D-loop region in mice neurons captured with laser capture microdissection. The results showed that mutation of neuronal mtDNA D-loop sequences increased in mice treated with each of the four nucleoside analogues for 4 months and D4T and DDI induced more severe D-loop lesion than the other two nucleoside analogues. The major type of D-loop point mutations induced by four nucleoside analogues was transition, in particular of "A→G" and "T→C" transition, but the point transition sites were variable. Our findings suggest that long-term exposure to nucleoside analogue can result in mtDNA D-loop region lesion in mouse cortical neurons.


Assuntos
DNA Mitocondrial/genética , Mutação , Neurônios/efeitos dos fármacos , Inibidores da Transcriptase Reversa/efeitos adversos , Animais , Córtex Cerebral/efeitos dos fármacos , Didanosina/efeitos adversos , Lamivudina/efeitos adversos , Microdissecção e Captura a Laser , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Estavudina/efeitos adversos , Zidovudina/efeitos adversos
18.
Tumour Biol ; 36(2): 1313-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25355599

RESUMO

Colorectal cancer (CRC, also known as colon cancer, rectal cancer, or bowel cancer) is the second leading cause of cancer mortality in the Western world. MicroRNAs (miRNAs) are a class of small (18-25 nucleotides long) noncoding RNAs with important posttranscriptional regulatory functions. miRNAs play important roles in various physiological and pathological processes including carcinogenesis in various solid cancers including CRC. In order to investigate the roles that miRNAs played in CRC, the expression of human miRNAs (in 20 normal adjacent tissue samples and 20 colon cancer samples) was examined in this study. miR-455, miR-484, and miR-101 were significantly downregulated in colon cancer samples. And overexpression of miR-455 significantly inhibited the proliferation and the invasion of SW480, but had no effect on apoptosis. PCR and Western blot showed that overexpression of miR-455 decreased protein expression of RAF proto-oncogene serine/threonine-protein kinase (RAF1) but had no effect on mRNA level. Luciferase assay indicated that miR-455 regulated RAF1 expression directly. Moreover, overexpression of RAF1 partially reversed the inhibitory effect of miR-455 on the growth and the invasion of SW480. The data indicated that miR-455 regulates the proliferation and invasion of colorectal cancer cells, at least in part, by downregulating RAF1, a direct target of miR-455. Collectively, our study demonstrated that miR-455-RAF1 may represent a new potential therapeutic target for colorectal carcinoma treatment.


Assuntos
Proliferação de Células , Neoplasias Colorretais/genética , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-raf/biossíntese , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica/genética , Proto-Oncogene Mas
19.
Mol Cell Biochem ; 400(1-2): 287-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25476740

RESUMO

CXCL13, an inflammatory factor in the microenvironment, plays a vital role in the progression of inflammatory diseases and tumors. CXCL13 and its receptor CXCR5 have been reported to be associated with poor prognosis of advanced colon cancer. However, the molecular mechanisms of CXCL13-CXCR5 axis in colon cancer remain elusive. The aim of this study was to investigate the role of CXCR5-CXCL13 axis in the growth and invasion of colon cancer cells. Our results showed that CXCL13 promoted the growth, migration, and matrigel invasion of colon cancer cells. Furthermore, CXCL13 increased the expression and secretion of MMP-13, and stimulated the activation of PI3K/AKT pathway. After knockdown of CXCR5 by siRNA, the biological functions of colon cancer cells regulated by CXCL13 were significantly inhibited. In addition, inhibition of PI3K/AKT pathway by specific inhibitor LY294002 suppressed the CXCL13-mediated growth, migration, and invasion of colon cancer cells. Together, our findings suggest that CXCL13-CXCR5 axis promotes the growth, migration, and invasion of colon cancer cells, probably via PI3K/AKT pathway. Thus, CXCL13 may be a useful biomarker for the detection and treatment of colon cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL13/biossíntese , Neoplasias do Colo/genética , Receptores CXCR5/biossíntese , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimiocina CXCL13/genética , Cromonas , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Morfolinas , Invasividade Neoplásica/genética , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno , Receptores CXCR5/genética , Transdução de Sinais/efeitos dos fármacos
20.
Clin Exp Pharmacol Physiol ; 42(10): 1068-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26174423

RESUMO

Ligands of the translocator protein (18 kDa) (TSPO) have demonstrated rapid anxiolytic efficacy in stress responses and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids including pregnenolone, dehydroepiandrosterone, and progesterone. These neurosteroids promote γ-aminobutyric acid-mediated neurotransmission in the central neural system (CNS). A TSPO ligand, N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was recently synthesized. The purpose of the present study was to investigate the neuroprotective effects of ZBD-2 and. In cultured cortical neurons, treatment with ZBD-2 attenuated excitotoxicity induced by N-methyl-d-aspartate (NMDA) exposure. It significantly decreased the number of apoptotic cells by downregulating GluN2B-containing NMDA receptors (NMDARs), the ratio of Bax/Bcl-2, and levels of pro-caspase-3. Systemic treatment of ZBD-2 provided significant neuroprotection in mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that neuroprotection by ZBD-2 is partially mediated by inhibiting GluN2B-containing NMDA receptor-mediated excitotoxicity.


Assuntos
Acetamidas/farmacologia , Isquemia Encefálica/prevenção & controle , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Purinonas/farmacologia , Receptores de GABA/metabolismo , Acetamidas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Masculino , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinonas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA