Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256731

RESUMO

To cope with the yield loss caused by drought stress, new oat varieties with greater drought tolerance need to be selected. In this study, two oat varieties with different drought tolerances were selected for analysis of their phenotypes and physiological indices under moderate and severe soil drought stress. The results revealed significant differences in the degree of wilting, leaf relative water content (RWC), and SOD and CAT activity between the two oat genotypes under severe soil drought stress; moreover, the drought-tolerant variety exhibited a significant increase in the number of stomata and wax crystals on the surface of both the leaf and guard cells; additionally, the morphology of the guard cells was normal, and there was no significant disruption of the grana lamella membrane or the nuclear envelope. Furthermore, transcriptome analysis revealed that the expression of genes related to the biosynthesis of waxes and cell-wall components, as well as those of the WRKY family, significantly increased in the drought-tolerant variety. These findings suggest that several genes involved in the antioxidant pathway could improve drought tolerance in plants by regulating the increase/decrease in wax and cell-wall constituents and maintaining normal cellular water potential, as well as improving the ability of the antioxidant system to scavenge peroxides in oats.

2.
Plants (Basel) ; 13(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124279

RESUMO

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat genotypes to investigate the effects of post-anthesis drought on growth and physicochemical characteristics. The study aimed to elucidate the response of Tartary buckwheat to drought stress. The findings indicated that post-anthesis drought adversely impacted the growth, morphology, and biomass accumulation of Tartary buckwheat. Drought stress enhanced the maximum photosynthetic capacity (Fv/Fm) and light protection ability (NPQ) of the 'Xiqiao-2' genotype. In response to drought stress, 'Dingku-1' and 'Xiqiao-2' maintained osmotic balance by accumulating soluble sugars and proline, respectively. Notably, 'Xiqiao-2' exhibited elevated levels of flavonoids and polyphenols in its leaves, which helped mitigate oxidative damage caused by drought. Furthermore, rewatering after a brief drought period significantly improved plant height, stem diameter, and biomass accumulation in 'Dingku-1'. Overall, 'Xiqiao-2' demonstrated greater long-term tolerance to post-anthesis drought, while 'Dingku-1' was less adversely affected by short-term post-anthesis drought.

3.
Nat Genet ; 54(8): 1248-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851189

RESUMO

Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.


Assuntos
Avena , Genoma de Planta , Avena/genética , Diploide , Genoma de Planta/genética , Humanos , Poliploidia , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA