Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Lipid Res ; 58(8): 1624-1635, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596183

RESUMO

Food intake induces synthesis of N-acylphosphatidylethanolamines (NAPEs) in the intestinal tract. While NAPEs exert leptin-like (leptogenic) effects, including reduced weight gain and food intake, the mechanisms by which NAPEs induce these leptogenic effects remain unclear. One key question is whether intestinal NAPEs act directly on cognate receptors or first require conversion to N-acylethanolamides (NAEs) by NAPE-hydrolyzing phospholipase D (NAPE-PLD). Previous studies using Nape-pld-/- mice were equivocal because intraperitoneal injection of NAPEs led to nonspecific aversive effects. To avoid the aversive effects of injection, we delivered NAPEs and NAEs intestinally using gut bacteria synthesizing these compounds. Unlike in wild-type mice, increasing intestinal levels of NAPE using NAPE-synthesizing bacteria in Nape-pld-/- mice failed to reduce food intake and weight gain or alter gene expression. In contrast, increasing intestinal NAE levels in Nape-pld-/- mice using NAE-synthesizing bacteria induced all of these effects. These NAE-synthesizing bacteria also markedly increased NAE levels and decreased inflammatory gene expression in omental adipose tissue. These results demonstrate that intestinal NAPEs require conversion to NAEs by the action of NAPE-PLD to exert their various leptogenic effects, so that the reduced intestinal NAPE-PLD activity found in obese subjects may directly contribute to excess food intake and obesity.


Assuntos
Leptina/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/metabolismo , Animais , Arabidopsis/enzimologia , Hidrólise , Camundongos
2.
Comput Biol Chem ; 110: 108050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447272

RESUMO

Read mapping as the foundation of computational biology is a bottleneck task under the pressure of sequencing throughput explodes. In this work, we present an efficient Burrows-Wheeler transform-based aligner for next-generation sequencing (NGS) short read. Firstly, we propose a difference-aware classification strategy to assign specific reads to the computationally more economical search modes, and present some acceleration techniques, such as a seed pruning method based on the property of maximum coverage interval to reduce the redundant locating for candidate regions, redesigning LF calculation to support fast query. Then, we propose a heuristic verification to determine the best mapping from amounts of flanking sequences. Incorporated with low-distortion string embedding, most dissimilar sequences are filtered out cheaply, and the highly similar sequences left are just right for the wavefront alignment algorithm's preference. We provide a full spectrum benchmark with different read lengths, the results show that our method is 1.3-1.4 times faster than state-of-the-art Burrows-Wheeler transform-based methods (including bowtie2, bwa-MEM, and hisat2) over 101bp reads and has a speedup with 1.5-13 times faster over 750bp to 1000bp reads; meanwhile, our method has comparable memory usage and accuracy. However, hash-based methods (including Strobealign, Minimap2, and Accel-Align) are significantly faster, in part because Burrows-Wheeler transform-based methods calculate on the compressed space. The source code is available: https://github.com/Lilu-guo/Effaln.

3.
Commun Biol ; 7(1): 932, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095617

RESUMO

While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8jck), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease. Single nuclei analysis identified robust transcriptional changes across multiple kidney cell types, including epithelial and immune lineages. To further explore the role of GSL modulation in macrophage biology, we performed in vitro studies with homeostatic and inflammatory bone marrow-derived macrophages. Cumulatively, this study provides a comprehensive overview of renal dysfunction and the effect of GSL modulation on kidney-derived cells in the setting of renal dysfunction.


Assuntos
Glucosiltransferases , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/antagonistas & inibidores , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Masculino
4.
J Lipid Res ; 54(11): 3151-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24018423

RESUMO

Lipid aldehydes including isolevuglandins (IsoLGs) and 4-hydroxynonenal modify phosphatidylethanolamine (PE) to form proinflammatory and cytotoxic adducts. Therefore, cells may have evolved mechanisms to degrade and prevent accumulation of these potentially harmful compounds. To test if cells could degrade isolevuglandin-modified phosphatidylethanolamine (IsoLG-PE), we generated IsoLG-PE in human embryonic kidney 293 (HEK293) cells and human umbilical cord endothelial cells and measured its stability over time. We found that IsoLG-PE levels decreased more than 75% after 6 h, suggesting that IsoLG-PE was indeed degraded. Because N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) has been described as a key enzyme in the hydrolysis of N-acyl phosphatidylethanoamine (NAPE) and both NAPE and IsoLG-PE have large aliphatic headgroups, we considered the possibility that this enzyme might also hydrolyze IsoLG-PE. We found that knockdown of NAPE-PLD expression using small interfering RNA (siRNA) significantly increased the persistence of IsoLG-PE in HEK293 cells. IsoLG-PE competed with NAPE for hydrolysis by recombinant mouse NAPE-PLD, with the catalytic efficiency (V(max)/K(m)) for hydrolysis of IsoLG-PE being 30% of that for hydrolysis of NAPE. LC-MS/MS analysis confirmed that recombinant NAPE-PLD hydrolyzed IsoLG-PE to IsoLG-ethanolamine. These results demonstrate that NAPE-PLD contributes to the degradation of IsoLG-PE and suggest that a major physiological role of NAPE-PLD may be to degrade aldehyde-modified PE, thereby preventing the accumulation of these harmful compounds.


Assuntos
Aldeídos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/metabolismo , Animais , Inativação Gênica , Células HEK293 , Humanos , Hidrólise , Camundongos , Fosfolipase D/deficiência , Fosfolipase D/genética
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 38(1): 54-9, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23406865

RESUMO

OBJECTIVE: To investigate the therapeutic mechanism of letrozole, the third-generation aromatase inhibitor, on endometriotic lesions in a rat model and its effect on the apoptosis of ectopic endometrial cells. METHODS: Endometriosis was induced by autotransplanting pieces of uterus onto the peritoneum in rats. The rats with successful ectopic implants were divided into 2 groups: A letrozole group (n=15) and a control group (n=15). The volume, appearance, and histopathology of ectopic implant were determined before and after the treatment. Expression of P450arom, COX-2, bcl-2, and bax in the ectopic implant was detected by immunohistochemistry and RT-PCR in the 2 groups. RESULTS: The volume of ectopic implant in the letrozole group was significantly reduced compared with the control group (P<0.05). The protein and mRNA levels of P450arom and COX-2 in the ectopic implant were significantly decreased in the letrozole group compared with the control group (P<0.05). There was a positive correlation between the expression of P450arom and the expression of COX-2 (r=0.943, P<0.001; r=0.913, P<0.001). The protein and mRNA expression of bcl-2 was significantly decreased (P<0.05), and the bax protein and mRNA expression was significantly increased (P<0.05) in the ectopic implant with an increased bax/bcl-2 ratio in the letrozole group compared with the control group (P<0.05). CONCLUSION: Letrozole can obviously reduce the size of ectopic implant through decreasing P450arom and COX-2 expression, suppressing the secretion of estrogen, inhibiting the proliferation, and inducing the apoptosis of ectopic implants.


Assuntos
Apoptose/efeitos dos fármacos , Endometriose/tratamento farmacológico , Endométrio/patologia , Nitrilas/uso terapêutico , Triazóis/uso terapêutico , Animais , Aromatase/metabolismo , Inibidores da Aromatase/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Feminino , Letrozol , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
6.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249220

RESUMO

Background: A salutary effect of treatments for Gaucher disease (GD) has been a reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT) , and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity, or anti-drug antibodies. Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center. Methods: Longitudinal follow-ups of 155 GD patients between 2001 and 2021 were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment. Results: The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI, 1.5-67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI, 1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001). Conclusions: There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found that increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization. Funding: LSD Training Fellowship from Sanofi to MB.


Assuntos
Doença de Gaucher , Osteonecrose , Humanos , Doença de Gaucher/complicações , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Centros de Atenção Terciária , Biomarcadores/metabolismo , Osteonecrose/complicações , Osteonecrose/epidemiologia , Medição de Risco
7.
Nat Neurosci ; 26(1): 12-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536241

RESUMO

Iron dysregulation has been implicated in multiple neurodegenerative diseases, including Parkinson's disease (PD). Iron-loaded microglia are frequently found in affected brain regions, but how iron accumulation influences microglia physiology and contributes to neurodegeneration is poorly understood. Here we show that human induced pluripotent stem cell-derived microglia grown in a tri-culture system are highly responsive to iron and susceptible to ferroptosis, an iron-dependent form of cell death. Furthermore, iron overload causes a marked shift in the microglial transcriptional state that overlaps with a transcriptomic signature found in PD postmortem brain microglia. Our data also show that this microglial response contributes to neurodegeneration, as removal of microglia from the tri-culture system substantially delayed iron-induced neurotoxicity. To elucidate the mechanisms regulating iron response in microglia, we performed a genome-wide CRISPR screen and identified novel regulators of ferroptosis, including the vesicle trafficking gene SEC24B. These data suggest a critical role for microglia iron overload and ferroptosis in neurodegeneration.


Assuntos
Ferroptose , Células-Tronco Pluripotentes Induzidas , Sobrecarga de Ferro , Doença de Parkinson , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Microglia/metabolismo , Doença de Parkinson/genética
8.
J Biol Chem ; 286(20): 18170-80, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454544

RESUMO

Peroxidation of plasma lipoproteins has been implicated in the endothelial cell activation and monocyte adhesion that initiate atherosclerosis, but the exact mechanisms underlying this activation remain unclear. Lipid peroxidation generates lipid aldehydes, including the γ-ketoaldehydes (γKA), also termed isoketals or isolevuglandins, that readily modify the amine headgroup of phosphatidylethanolamine (PE). We hypothesized that aldehyde modification of PE could mediate some of the proinflammatory effects of lipid peroxidation. We found that PE modified by γKA (γKA-PE) induced THP-1 monocyte adhesion to human umbilical cord endothelial cells. γKA-PE also induced expression of adhesion molecules and increased MCP-1 and IL-8 mRNA in human umbilical cord endothelial cells. To determine the structural requirements for γKA-PE activity, we tested several related compounds. PE modified by 4-oxo-pentanal induced THP-1 adhesion, but N-glutaroyl-PE and C(18:0)N-acyl-PE did not, suggesting that an N-pyrrole moiety was essential for cellular activity. As the N-pyrrole headgroup might distort the membrane, we tested the effect of the pyrrole-PEs on membrane parameters. γKA-PE and 4-oxo-pentanal significantly reduced the temperature for the liquid crystalline to hexagonal phase transition in artificial bilayers, suggesting that these pyrrole-PE markedly altered membrane curvature. Additionally, fluorescently labeled γKA-PE rapidly internalized to the endoplasmic reticulum (ER); γKA-PE induced C/EBP homologous protein CHOP and BiP expression and p38 MAPK activity, and inhibitors of ER stress reduced γKA-PE-induced C/EBP homologous protein CHOP and BiP expression as well as EC activation, consistent with γKA-PE inducing ER stress responses that have been previously linked to inflammatory chemokine expression. Thus, γKA-PE is a potential mediator of the inflammation induced by lipid peroxidation.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Fosfatidiletanolaminas/metabolismo , Moléculas de Adesão Celular/biossíntese , Linhagem Celular , Quimiocina CCL2/biossíntese , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Interleucina-8/biossíntese , Bicamadas Lipídicas , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas
9.
Reprod Biol ; 22(3): 100675, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901619

RESUMO

MALAT1, microRNA (miR)-142-3p, and CXCR7 are critical molecules mediating endometriosis progression, and their correlation in endometriosis has been barely discussed. Thus, this research sought to survey the impact of MALAT1 on endometrial stromal cell (ESC) proliferation, apoptosis, and inflammation via miR-142-3p/CXCR7 axis to promote explorations on endometriosis. In endometrial tissues and ESCs, CXCR7 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis and miR-142-3p and MALAT1 expression by qRT-PCR. Then, ESC proliferation was assessed by CCK-8 and EdU labeling assays, apoptosis by flow cytometry, and levels of inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in ESC supernatant by enzyme linked immunosorbent assay. The interactions among CXCR7, miR-142-3p, and MALAT1 were evaluated by dual luciferase reporter gene, RNA pull-down, and Argonaute 2- RNA immunoprecipitation assays. At last, the relevance of miR-142-3p to MALAT1 and that of miR-142-3p to CXCR7 in ectopic endometrial tissues were analyzed using Pearson correlation analysis. CXCR7 and MALAT1 were overexpressed whilst miR-142-3p was lowly expressed in ectopic endometrial tissues. CXCR7 silencing or miR-142-3p overexpression reduced proliferative ability and enhanced apoptosis rate in ESCs and decreased TNF-α, IL-1ß, and IL-6 levels in cell supernatant. miR-142-3p negatively targeted CXCR7 while MALAT1 negatively targeted miR-142-3p. However, MALAT1 silencing diminished ESC proliferation and TNF-α, IL-1ß, and IL-6 levels in ESC supernatant and elevated ESC apoptosis, which was counterweighed by inhibiting miR-142-3p. Conclusively, MALAT1 promoted ESC proliferation and inflammatory factor expression and inhibited ESC apoptosis via miR-142-3p/CXCR axis.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante/metabolismo , Apoptose , Proliferação de Células , Endometriose/metabolismo , Endometriose/patologia , Feminino , Humanos , Inflamação/metabolismo , Interleucina-6 , Células Estromais , Fator de Necrose Tumoral alfa
10.
Elife ; 112022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972072

RESUMO

Background: Neuronopathic Gaucher disease (nGD) is a rare neurodegenerative disorder caused by biallelic mutations in GBA and buildup of glycosphingolipids in lysosomes. Neuronal injury and cell death are prominent pathological features; however, the role of GBA in individual cell types and involvement of microglia, blood-derived macrophages, and immune infiltrates in nGD pathophysiology remains enigmatic. Methods: Here, using single-cell resolution of mouse nGD brains, lipidomics, and newly generated biomarkers, we found induction of neuroinflammation pathways involving microglia, NK cells, astrocytes, and neurons. Results: Targeted rescue of Gba in microglia and neurons, respectively, in Gba-deficient, nGD mice reversed the buildup of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), concomitant with amelioration of neuroinflammation, reduced serum neurofilament light chain (Nf-L), and improved survival. Serum GlcSph concentration was correlated with serum Nf-L and ApoE in nGD mouse models as well as in GD patients. Gba rescue in microglia/macrophage compartment prolonged survival, which was further enhanced upon treatment with brain-permeant inhibitor of glucosylceramide synthase, effects mediated via improved glycosphingolipid homeostasis, and reversal of neuroinflammation involving activation of microglia, brain macrophages, and NK cells. Conclusions: Together, our study delineates individual cellular effects of Gba deficiency in nGD brains, highlighting the central role of neuroinflammation driven by microglia activation. Brain-permeant small-molecule inhibitor of glucosylceramide synthase reduced the accumulation of bioactive glycosphingolipids, concomitant with amelioration of neuroinflammation involving microglia, NK cells, astrocytes, and neurons. Our findings advance nGD disease biology whilst identifying compelling biomarkers of nGD to improve patient management, enrich clinical trials, and illuminate therapeutic targets. Funding: Research grant from Sanofi; other support includes R01NS110354, Yale Liver Center P30DK034989, pilot project grant.


Assuntos
Doença de Gaucher , Animais , Biomarcadores , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glicoesfingolipídeos , Células Matadoras Naturais/metabolismo , Camundongos , Microglia/metabolismo , Doenças Neuroinflamatórias , Projetos Piloto
11.
Mol Genet Metab Rep ; 29: 100798, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34485083

RESUMO

In Gaucher disease (GD), genetic deficiency of acid ß-glucosidase leads to accumulation of its substrate glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Lipid-laden cells, most prominently seen as macrophages engorged with GlcCer and GlcSph-laden lysosomes, trigger chronic metabolic inflammation and multisystemic phenotypes. Among the pleiotropic effects of inflammatory cascades, the induction of glucosylceramide synthase accentuates the primary metabolic defect. First-line therapies for adults with GD type 1 include Enzyme Replacement Therapy (ERT) and eliglustat Substrate Reduction Therapy (SRT). The ENCORE phase 3 clinical trial of eliglustat demonstrated non-inferiority compared to ERT. It is not known whether switching stable patients from long-term ERT to SRT results in the incremental reversal of the disease phenotype and its surrogate indicators. Herein, we report real-world experience from a single tertiary referral center of 38 adult GD type 1 patients, stable on long-term ERT (mean 13.3 years), who switched to eliglustat SRT (mean 3.1 years). After switch to SRT, there was significant reduction in spleen volume (P = 0.003) while liver volume, which was normal at baseline, remained unchanged. Platelet counts increased significantly (P = 0.026). Concomitantly, there was reduction of three validated biomarkers of Gaucher disease activity: plasma GlcSph decreased from 63.7 ng/ml (95% CI, 37.6-89.8) to 26.1 ng/ml (95% CI, 15.7-36.6) (P < 0.0001); chitotriosidase fell from 1136.6 nmol/ml/h (95% CI, 144.7-2128.6) to 466.9 nmol/ml/h (95% CI, 209.9-723.9) (P = 0.002); and glycoprotein non-metastatic melanoma B (gpNMB) decreased from 59.3 ng/ml (95% CI, 39.7-78.9) to 43.6 ng/ml (95% CI, 30.7-56.6) (P = 0.0006). There were no episodes of avascular necrosis or fractures in patients on SRT. Patients reported favorable experiences of switching from alternate week infusions to oral therapy. Collectively, these results demonstrate that the switch to eliglustat SRT from ERT leads to incremental response, even in stable patients after long-term ERT.

12.
Cell Rep ; 35(6): 109112, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979622

RESUMO

Receptor interacting protein kinase 1 (RIPK1) mediates cell death and inflammatory signaling and is increased in multiple sclerosis (MS) brain samples. Here, we investigate the role of glial RIPK1 kinase activity in mediating MS pathogenesis. We demonstrate RIPK1 levels correlate with MS disease progression. We find microglia are susceptible to RIPK1-mediated cell death and identify an inflammatory gene signature that may contribute to the neuroinflammatory milieu in MS patients. We uncover a distinct role for RIPK1 in astrocytes in regulating inflammatory signaling in the absence of cell death and confirm RIPK1-kinase-dependent regulation in human glia. Using a murine MS model, we show RIPK1 inhibition attenuates disease progression and suppresses deleterious signaling in astrocytes and microglia. Our results suggest RIPK1 kinase activation in microglia and astrocytes induces a detrimental neuroinflammatory program that contributes to the neurodegenerative environment in progressive MS.


Assuntos
Microglia/metabolismo , Esclerose Múltipla/genética , Doenças Neuroinflamatórias/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Esclerose Múltipla/patologia , Transdução de Sinais
13.
Anal Biochem ; 405(2): 236-45, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599652

RESUMO

N-Acyl phosphatidylethanolamines (NAPEs) are synthesised in response to stress in a variety of organisms from bacteria to humans. More recently, nonenzymatic modification of the ethanolamine headgroup of phosphatidylethanolamine (PE) by various aldehydes, including levuglandins/isoketals (which are gamma-ketoaldehydes [gammaKAs] derived from arachidonic acid), has also been demonstrated. The levels of these various N-modified PEs formed during stress and their biological significance remain to be fully characterized. Such studies require an accurate, facile, and cost-effective method for quantifying N-modified PEs. Previously, NAPE and some of the nonenzymatically N-modified PE species have been quantified by mass spectrometry after hydrolysis to their constituent N-acylethanolamine by enzymatic hydrolysis, most typically with Streptomyces chromofuscus phospholipase D. However, enzymatic hydrolysis is not cost-effective for routine analysis of a large number of samples, and hydrolytic efficiency may vary for different N-modified PEs, making quantitation more difficult. Therefore, we sought a robust and inexpensive chemical hydrolysis approach. Methylamine (CH(3)NH(2))-mediated deacylation has previously been used in headgroup analysis of phosphatidylinositol phosphates. Therefore, we developed an accurate assay for NAPEs and gammaKA-PEs using CH(3)NH(2)-mediated deacylation and quantitation of the resulting glycerophospho-N-modified ethanolamines by liquid chromatography-tandem mass spectrometry.


Assuntos
Cromatografia Líquida/métodos , Fosfatidiletanolaminas/química , Espectrometria de Massas em Tandem/métodos , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Células Cultivadas , Hidrólise , Metilaminas/química , Metilaminas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Streptomyces/metabolismo
14.
Bioorg Med Chem Lett ; 20(3): 1194-7, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20034789

RESUMO

Fluorophosphonate (FP) head groups were tethered to a variety of chromophores (C) via a triazole group and tested as FPC inhibitors of recombinant mouse (rMoAChE) and electric eel (EEAChE) acetylcholinesterase. The inhibitors showed bimolecular inhibition constants (k(i)) ranging from 0.3 x 10(5)M(-1)min(-1) to 10.4 x 10(5)M(-1)min(-1). When tested against rMoAChE, the dansyl FPC was 12.5-fold more potent than the corresponding inhibitor bearing a Texas Red as chromophore, whereas the Lissamine and dabsyl chromophores led to better anti-EEAChE inhibitors. Most inhibitors were equal or better inhibitors of rMoAChE than EEAChE. 3-Azidopropyl fluorophosphonate, which served as one of the FP head groups, showed excellent inhibitory potency against both AChE's ( congruent with 1 x 10(7)M(-1)min(-1)) indicating, in general, that addition of the chromophore reduced the overall anti-AChE activity. Covalent attachment of the dabsyl-FPC analog to rMoAChE was demonstrated using size exclusion chromatography and spectroscopic analysis, and visualized using molecular modeling.


Assuntos
Acetilcolinesterase/metabolismo , Ácidos Araquidônicos/química , Inibidores da Colinesterase/química , Organofosfonatos/química , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Camundongos , Organofosfonatos/metabolismo , Organofosfonatos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia
15.
Bioorg Med Chem ; 18(2): 787-94, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20005727

RESUMO

Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10(-3)M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10(-3)M), whereas their ability to reactivate was increased at lower concentrations (10(-4)M and 10(-5)M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10(-5)M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10(-4)M. Amongst newly synthesized analogs with heterocyclic linkers (26-35 and 45-46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a k(r) 0.042min(-1), which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a k(r) 0.0041min(-1) that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores Enzimáticos/farmacologia , Oximas/farmacologia , Paraoxon/farmacologia , Compostos de Piridínio/farmacologia , Animais , Relação Dose-Resposta a Droga , Electrophorus , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Oximas/síntese química , Oximas/química , Paraoxon/síntese química , Paraoxon/química , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Proteínas Recombinantes/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
16.
J Enzyme Inhib Med Chem ; 25(1): 116-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19842944

RESUMO

The inhibition of recombinant mouse acetylcholinesterase (rMAChE) and electric eel acetylcholinesterase (EEAChE) by seven, structurally different chromophore-based (dansyl, pyrene, dabsyl, diethylamino- and methoxycoumarin, Lissamine rhodamine B, and Texas Red) propargyl carboxamides or sulfonamides was studied. Diethylaminocoumarin, Lissamine, and Texas Red amides inhibited rMAChE with IC50 values of 1.00 microM, 0.05 microM, and 0.70 microM, respectively. Lissamine and Texas Red amides inhibited EEAChE with IC50 values of 3.57 and 10.4 microM, respectively. The other chromophore amides did not inhibit either AChE. The surprising inhibitory potency of Lissamine was examined in further detail against EEAChE and revealed a mixed-type inhibition with Ki = 11.7 microM (competitive) and Ki' = 24.9 microM (noncompetitive), suggesting that Lissamine binds to free enzyme and enzyme-substrate complex.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Corantes Fluorescentes/farmacologia , Animais , Inibidores da Colinesterase/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética , Camundongos , Espectrometria de Massas por Ionização por Electrospray
17.
Bioorg Med Chem Lett ; 19(17): 5101-4, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19640713

RESUMO

The preparation of a series of monoquaternary pyridinium oximes bearing either a heterocyclic side chain or a functionalized aliphatic side chain and the corresponding in vitro evaluation for reactivation of paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE) are reported. Several newly synthesized compounds efficiently reactivated inhibited EeAChE, but were poor reactivators of inhibited rHuAChE. Compounds bearing a thiophene ring in the side chain (20, 23, 26 and 29) showed better reactivation (24-37% for EeAChE and 5-9% for rHuAChE) compared to compounds with furan and isoxazole heterocycles (0-8% for EeAChE and 2-3% for rHuAChE) at 10(-5)M. The N-pyridyl-CH(2)COOH analog 8 reactivated EeAChE (36%) and rHuAChE (15%) at 10(-4)M with a k(r) value better than 2-pyridine aldoxime methiodide (2-PAM) for rHuAChE.


Assuntos
Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/síntese química , Oximas/síntese química , Compostos de Pralidoxima/química , Acetilcolinesterase/genética , Animais , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Electrophorus , Humanos , Oximas/química , Oximas/farmacologia , Paraoxon/farmacologia , Compostos de Pralidoxima/síntese química , Compostos de Pralidoxima/farmacologia , Proteínas Recombinantes/metabolismo
18.
Acta Crystallogr C ; 65(Pt 4): o179-82, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19346618

RESUMO

Diastereoisomers of the title organophosphorus compound, C(12)H(19)N(4)OPS, denoted R(C)S(P), (I), and R(C)R(P), (II), were structurally characterized and compared. Asymmetric phosphorus compounds are of interest with regard to the use of these systems as possible protein probes via the stereoselective delivery of an azide group tethered to the P atom into key protein regions. The diastereomers were produced in a 1:1 mixture and isolated by chromatography. Although both isomers crystallize in the same space group with superficially similar cell constants, conformational and packing differences are pronounced. Despite the conformational differences, strong intermolecular hydrogen bonding links both isomers into chains parallel to the a axis [N...O = 2.8609 (18) and 2.966 (3) A in (I) and (II), respectively], with C-H...pi interchain interactions of ca 3.5 A.


Assuntos
Modelos Moleculares , Organofosfatos/química , Cristalização , Ligação de Hidrogênio , Estrutura Molecular , Estereoisomerismo
19.
Genes (Basel) ; 10(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700040

RESUMO

Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing scRNA-seq . However, there are several limitations to overcome, including high dimensionality, clustering result instability, and parameter adjustment complexity. In this study, we propose a method by combining structure entropy and k nearest neighbor to identify cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying cell subtypes, minimized structure entropy results in natural communities without specifying the number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq datasets and compared our method with three existing methods (nonnegative matrix factorization, single-cell interpretation via multikernel learning, and structural entropy minimization principle). The experimental results showed that our approach achieves, on average, better performance in these datasets compared to the benchmark methods.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Análise por Conglomerados , Humanos , Aprendizado de Máquina não Supervisionado
20.
ACS Infect Dis ; 4(1): 3-13, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29019649

RESUMO

Engineering the gut microbiota to produce specific beneficial metabolites represents an important new potential strategy for treating chronic diseases. Our previous studies with bacteria engineered to produce N-acyl-phosphatidylethanolamines (NAPEs), the immediate precursors of the lipid satiety factors N-acyl-ethanolamides (NAEs), found that colonization of these bacteria inhibited development of obesity in C57BL/6J mice fed a high fat diet. Individual NAE species differ in their bioactivities. Intriguingly, colonization by our engineered bacteria resulted in increased hepatic N-stearoyl-ethanolamide (C18:0NAE) levels despite the apparent inability of these bacteria to biosynthesize its precursor N-stearoyl-phosphatidylethanolamine (C18:0NAPE) in vitro. We therefore sought to identify the factors that allowed C18:0NAPE biosynthesis by the engineered bacteria after colonization of the intestinal tract. We found that the species of NAPE biosynthesized by engineered bacteria depends on the species of dietary fatty acids available in the intestine, suggesting a simple method to fine-tune the therapeutic effects of modified microbiota.


Assuntos
Bactérias/metabolismo , Dieta , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Fosfatidiletanolaminas/biossíntese , Aciltransferases/metabolismo , Animais , Biomarcadores , Vias Biossintéticas , Cromatografia Líquida , Ácidos Graxos/administração & dosagem , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Fosfatidiletanolaminas/química , Espectrometria de Massas em Tandem , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA