Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2309575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279627

RESUMO

Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.

2.
Nano Lett ; 21(2): 1161-1168, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33411539

RESUMO

Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.

3.
Small ; 14(39): e1802498, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30160374

RESUMO

It is rarely reported that stacking orientations of bilayer graphene (BLG) can be manipulated by the annealing process. Most investigators have painstakingly fabricated this BLG by chemical vapor deposition growth or mechanical means. Here, it is discovered that, at ≈600 °C, called the critical annealing temperature (CAT), most stacking orientations collapse into strongly coupled or AB-stacked states. This phenomenon is governed (i) macroscopically by the stress generation and release in top graphene domains, evolving from mild ripples to sharp billows in certain local areas, and (ii) microscopically by the principle of minimal potential obeyed by carbon atoms that have acquired sufficient thermal energy at CAT. Conspicuously, evolutions of stacking orientations in Raman mappings under various annealing temperatures are observed. Furthermore, MoS2 synthesized on BLG is used to directly observe crystal orientations of top and bottom graphene layers. The finding of CAT provides a guide for the fabrication of strongly coupled or AB-stacked BLG, and can be applied to aligning other 2D heterostructures.

4.
ACS Nano ; 18(4): 2917-2927, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221729

RESUMO

A commonly used strategy to tackle the unstable interfacial problem between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) is to introduce an interlayer. However, this strategy has a limited effect on stabilizing LATP during long-term cycling or under high current density, which is due in part to the negative impact of its internal defects (e.g., gaps between grains (GBs)) that are usually neglected. Here, control experiments and theoretical calculations show clearly that the GBs of LATP have higher electronic conductivity, which significantly accelerates its side reactions with Li. Thus, a simple LiCl solution immersion method is demonstrated to modify the GBs and their electronic states, thereby stabilizing LATP. In addition to LiCl filling, composite solid polymer electrolyte (CSPE) interlayering is concurrently introduced at the Li/LATP interface to realize the internal-external dual modifications for LATP. As a result, electron leakage in LATP can be strictly inhibited from its interior (by LiCl) and exterior (by CSPE), and such dual modifications can well protect the Li/LATP interface from side reactions and Li dendrite penetration. Notably, thus-modified Li symmetrical cells can achieve ultrastable cycling for more than 3500 h at 0.4 mA cm-2 and 1500 h at 0.6 mA cm-2, among the best cycling performance to date.

5.
RSC Adv ; 12(42): 27189-27198, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276038

RESUMO

A ternary semiconductor ZnO/MoS2/Ag2S nanorod array in an intimate core-shell structure was synthesized on glass substrates. The physicochemical properties and photocatalytical performance of the specimen were characterized and compared with single ZnO and binary ZnO/Ag2S and ZnO/MoS2 nanorod arrays. It is found that the coating layers depressed the band edge emission of the ZnO core, improved light absorption in the visible range, reduced charge transfer resistance, and increased photocatalytic activity. The ternary heterojunction nanorod array possessed full solar absorption with an efficiency of 52.88% for the degradation of methylene blue under visible light in 30 min. The efficiency was higher than other arrays and was 7.6 times that of the ZnO array. Theory analysis revealed that the coating layer brought different band alignment in the heterojunctions for efficient charge separation and conduction, which was beneficial for the photocatalytic performance.

6.
Biosens Bioelectron ; 150: 111905, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791874

RESUMO

The use of plasmonic metasurface for sensing has great potential on label-free detection of human tumor markers, which could benefit clinical examination. In this work, we adopt nanoimprint and plasma etching to optimize the nanofabrication for low-cost flexible plasmonic metasurface sensors with gold nanobump arrays, which enable facile surface bio-functionality, high sensitivity and simple optical measurement in the visible range. A high bulk refractive index sensitivity of 454.4 nm/RIU is achieved for the prototype plasmonic metasurface sensors at the wavelengths from 620 nm to 720 nm. The rapid quantitative tumor marker sensing of carcinoembryonic antigen in human serum samples from less than 10 ng/mL to more than 87 ng/mL is achieved, which demonstrates good agreement with the conventional chemiluminescence immunoassay system and sufficiently covers the threshold tumor marker concentration of 20 ng/mL for early cancer prediction. Our method is capable of low-cost high-throughput manufacturing for flexible lightweight plasmonic metasurface sensors, which will facilitate wide applications on portable biomedical sensing devices for future point-of-care diagnosis and mobile healthcare.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/sangue , Ouro/química , Nanoestruturas/química , Biomarcadores Tumorais/sangue , Desenho de Equipamento , Humanos , Nanoestruturas/ultraestrutura , Neoplasias/sangue , Refratometria/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA