Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2317027121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159366

RESUMO

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) functions in the shikimate pathway which is responsible for the production of aromatic amino acids and precursors of other essential secondary metabolites in all plant species. EPSPS is also the molecular target of the herbicide glyphosate. While some plant EPSPS variants have been characterized with reduced glyphosate sensitivity and have been used in biotechnology, the glyphosate insensitivity typically comes with a cost to catalytic efficiency. Thus, there exists a need to generate additional EPSPS variants that maintain both high catalytic efficiency and high glyphosate tolerance. Here, we create a synthetic yeast system to rapidly study and evolve heterologous EPSP synthases for these dual traits. Using known EPSPS variants, we first validate that our synthetic yeast system is capable of recapitulating growth characteristics observed in plants grown in varying levels of glyphosate. Next, we demonstrate that variants from mutagenesis libraries with distinct phenotypic traits can be isolated depending on the selection criteria applied. By applying strong dual-trait selection pressure, we identify a notable EPSPS mutant after just a single round of evolution that displays robust glyphosate tolerance (Ki of nearly 1 mM) and improved enzymatic efficiency over the starting point (~2.5 fold). Finally, we show the crystal structure of corn EPSPS and the top resulting mutants and demonstrate that certain mutants have the potential to outperform previously reported glyphosate-resistant EPSPS mutants, such as T102I and P106S (denoted as TIPS), in whole-plant testing. Altogether, this platform helps explore the trade-off between glyphosate resistance and enzymatic efficiency.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Glicina , Glifosato , Saccharomyces cerevisiae , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência a Herbicidas/genética
2.
PLoS Genet ; 19(1): e1010045, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706133

RESUMO

The Arp2/3 complex is an actin nucleator with well-characterized activities in cell morphogenesis and movement, but its roles in nuclear processes are relatively understudied. We investigated how the Arp2/3 complex affects genomic integrity and cell cycle progression using mouse fibroblasts containing an inducible knockout (iKO) of the ArpC2 subunit. We show that permanent Arp2/3 complex ablation results in DNA damage, the formation of cytosolic micronuclei, and cellular senescence. Micronuclei arise in ArpC2 iKO cells due to chromatin segregation defects during mitosis and premature mitotic exits. Such phenotypes are explained by the presence of damaged DNA fragments that fail to attach to the mitotic spindle, abnormalities in actin assembly during metaphase, and asymmetric microtubule architecture during anaphase. In the nuclei of Arp2/3-depleted cells, the tumor suppressor p53 is activated and the cell cycle inhibitor Cdkn1a/p21 mediates a G1 arrest. In the cytosol, micronuclei are recognized by the DNA sensor cGAS, which is important for stimulating a STING- and IRF3-associated interferon response. These studies establish functional requirements for the mammalian Arp2/3 complex in mitotic spindle organization and genome stability. They also expand our understanding of the mechanisms leading to senescence and suggest that cytoskeletal dysfunction is an underlying factor in biological aging.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Animais , Camundongos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Senescência Celular/genética , DNA/metabolismo , Instabilidade Genômica/genética , Mitose/genética
3.
Plant Cell Rep ; 42(1): 45-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36316413

RESUMO

KEY MESSAGE: Efficient selectable marker gene autoexcision in transgenic plants of soybean, cotton, canola, and maize is achieved by effective Cre recombinase expression. Selectable marker genes are often required for efficient generation of transgenic plants in plant transformation but are not desired once the transgenic events are obtained. We have developed Cre/loxP autoexcision systems to remove selectable marker genes in soybean, cotton, canola and maize. We tested a set of vectors with diverse promoters and identified promising promoters to drive cre expression for each of the four crops. We evaluated both the efficiency of generating primary transgenic events with low transgene copy numbers, and the frequency of marker-free progeny in the next generation. The best performing vectors gave no obvious decrease in the transformation frequency in each crop and generated homozygous marker-free progeny in the next generation. We found that effective expression of Cre recombinase for marker gene autoexcision can be species dependent. Among the vectors tested, the best autoexcision frequency (41%) in soybean transformation came from using the soybean RSP1 promoter for cre expression. The cre gene expressed by soybean RSP1 promoter with an Arabidopsis AtpE intron delivered the best autoexcision frequency (69%) in cotton transformation. The cre gene expressed by the embryo-specific eUSP88 promoter from Vicia faba conferred the best marker excision frequency (32%) in canola transformation. Finally, the cre gene expressed by the rice CDC45-1 promoter resulted in 44% autoexcision in maize transformation. The Cre/loxP recombinase system enables the generation of selectable marker-free transgenic plants for commercial product development in four agriculturally important crops and provides further improvement opportunities for more specific and better marker excision efficiency.


Assuntos
Glycine max , Gossypium , Zea mays , Marcadores Genéticos , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Glycine max/genética , Transformação Genética , Zea mays/genética , Gossypium/genética
4.
Pest Manag Sci ; 76(3): 1031-1038, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31503398

RESUMO

BACKGROUND: Protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides act by inhibiting a key enzyme in the heme and chlorophyll biosynthetic pathways in plants. This enzyme, the PPO enzyme, is conserved across plant species. However, some microbes are known to utilize a unique family of PPO enzymes, the HemG family. This enzyme family carries out the same enzymatic step as the plant PPO enzymes, but does not share sequence homology with the plant PPO enzymes. RESULTS: Bioinformatic analysis was used to identify putative HemG PPO enzyme variants from microbial sources. A subset of these variants was cloned and characterized. HemG PPO variants were characterized for functionality and tolerance to PPO-inhibiting herbicides. HemG PPO variants that exhibited insensitivity to PPO-inhibiting herbicides were identified for further characterization. Expression of selected variants in maize, soybean, cotton and canola resulted in plants that displayed tolerance to applications of PPO-inhibiting herbicides. CONCLUSION: Selected microbial-sourced HemG PPO enzyme variants present an opportunity for building new herbicide tolerance biotechnology traits. These traits provide tolerance to PPO-inhibiting herbicides and, therefore, could provide additional tools for farmers to employ in their weed management systems. © 2019 Society of Chemical Industry.


Assuntos
Biotecnologia , Herbicidas , Protoporfirinogênio Oxidase , Glycine max , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA