Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sensors (Basel) ; 23(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37112372

RESUMO

The clinical success of vascular interventional surgery relies heavily on a surgeon's catheter/guidewire manipulation skills and strategies. An objective and accurate assessment method plays a critical role in evaluating the surgeon's technical manipulation skill level. Most of the existing evaluation methods incorporate the use of information technology to find more objective assessment models based on various metrics. However, in these models, sensors are often attached to the surgeon's hands or to interventional devices for data collection, which constrains the surgeon's operational movements or exerts an influence on the motion trajectory of interventional devices. In this paper, an image information-based assessment method is proposed for the evaluation of the surgeon's manipulation skills without the requirement of attaching sensors to the surgeon or catheters/guidewires. Surgeons are allowed to use their natural bedside manipulation skills during the data collection process. Their manipulation features during different catheterization tasks are derived from the motion analysis of the catheter/guidewire in video sequences. Notably, data relating to the number of speed peaks, slope variations, and the number of collisions are included in the assessment. Furthermore, the contact forces, resulting from interactions between the catheter/guidewire and the vascular model, are sensed by a 6-DoF F/T sensor. A support vector machine (SVM) classification framework is developed to discriminate the surgeon's catheterization skill levels. The experimental results demonstrate that the proposed SVM-based assessment method can obtain an accuracy of 97.02% to distinguish between the expert and novice manipulations, which is higher than that of other existing research achievements. The proposed method has great potential to facilitate skill assessment and training of novice surgeons in vascular interventional surgery.


Assuntos
Cateterismo , Cirurgiões , Humanos , Catéteres , Cirurgiões/educação
2.
Sensors (Basel) ; 19(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634717

RESUMO

Thrusters are the bottom actuators of the amphibious spherical robot, and play an important role in the motion control of these robots. To realize accurate motion control, a thrust model for a new water-jet thruster based on hydrodynamic analyses is proposed in this paper. First, the hydrodynamic characteristics of the new thruster were numerically analyzed using computational fluid dynamics (CFD) commercial software CFX. The moving reference frame (MRF) technique was utilized to simulate propeller rotation. In particular, the hydrodynamics of the thruster were studied not only in the axial flow but also in oblique flow. Then, the basic framework of the thrust model was built according to hydromechanics theory. Parameters in the basic framework were identified through the results of the hydrodynamic simulation. Finally, a series of relevant experiments were conducted to verify the accuracy of the thrust model. These proved that the thrust model-based simulation results agreed well with the experimental results. The maximum error between the experimental results and simulation results was only 7%, which indicates that the thrust model is precise enough to be utilized in the motion control of amphibious spherical robots.

3.
Biomed Microdevices ; 20(3): 74, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30116968

RESUMO

Minimally invasive vascular interventional surgery is widely used and remote-controlled vascular interventional surgery robots (RVIRs) are being developed to reduce the occupational risk of the intervening physician in minimally invasive vascular interventional surgeries. Skilled surgeon performs surgeries mainly depending on the detection of collisions. Inaccurate force feedback will be difficult for surgeons to perform surgeries or even results in medical accidents. In addition, the surgeon cannot quickly and easily distinguish whether the proximal force exceeds the safety threshold of blood vessels or not, and thus it results in damage to the blood vessels. In this paper, we present a novel method comprising compensatory force measurement and multimodal force feedback (MFF). Calibration experiments and performance evaluation experiments were carried out. Experimental results demonstrated that the proposed method can measure the proximal force of catheter/guidewire accurately and assist surgeons to distinguish the change of proximal force more easily. This novel method is suitable for use in actual surgical operations.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Procedimentos Cirúrgicos Robóticos , Procedimentos Cirúrgicos Vasculares , Calibragem , Cateterismo , Desenho de Equipamento , Retroalimentação , Humanos , Fenômenos Mecânicos , Pressão
4.
Biomed Microdevices ; 20(3): 64, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30074095

RESUMO

Robot-assisted movement training by means of exoskeleton devices has been proven to be an effective method for post-stroke patients to recover their motor function. However, in order to be used in home-based rehabilitation, the kinematic structure of a wearable exoskeleton device should provide portability and make allowances for the natural joint range of motion for the user. Additionally, the actuated stiffness of the target joint is desired to be adjustable in accordance with the specific impairment level of the patient's upper limb. In this paper, we present a novel portable exoskeleton device which could provide support for rehabilitation patients with variable actuated stiffness in the elbow joint. It has five passive degrees of freedom to guarantee the user's natural joint range of motion and intra-subject variability, as well as an integrated variable stiffness actuator (VSA) which can adjust the joint stiffness independently by moving the pivot position. An elbow power-assist trial with different actuated joint stiffnesses was tested on a healthy subject to evaluate the functionality of the proposed device. By regulating the joint stiffness, the proposed device could provide variable power assistance for the wearer's elbow movements.


Assuntos
Cotovelo/fisiologia , Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral/instrumentação , Adulto , Fenômenos Biomecânicos , Simulação por Computador , Articulação do Cotovelo/fisiologia , Desenho de Equipamento , Humanos , Masculino , Modelos Teóricos , Movimento , Amplitude de Movimento Articular , Robótica/instrumentação
5.
Biomed Microdevices ; 20(3): 76, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30136209

RESUMO

It is challenging to position a catheter or a guidewire within a patient's complicated and delicate vascular structure due to the lack of intuitive visual feedback by only manipulating the proximal part of the surgical instruments. Training is therefore critical before an actual surgery because any mistake due to the surgeon's inexperience can be fatal for the patient. The catheter manipulation skills of experienced surgeons can be useful as input for training novice surgeons. However, few research groups focused on designs with consideration of the contactless catheter motion measurement, which allows obtaining expert surgeons' catheter manipulation trajectories whilst still allowing them to employ an actual catheter and apply conventional pull, push and twist of the catheter as used in bedside intravascular interventional surgeries. In this paper, a novel contactless catheter-sensing method is proposed to measure the catheter motions by detecting and tracking a passive marker with four feature-point groups. The passive marker is designed to allow simultaneously sensing the translational and rotational motions of the input catheter. Finally, the effectiveness of the proposed contactless catheter-sensing method is validated by conducting a series of comparison experiments. The accuracy and error analysis are quantified based on the absolute error, relative error, mean absolute error, and the success rate of the detection.


Assuntos
Cateterismo/instrumentação , Catéteres , Desenho de Equipamento , Robótica/educação , Robótica/instrumentação , Cirurgiões/educação , Calibragem , Simulação por Computador , Procedimentos Endovasculares/educação , Procedimentos Endovasculares/instrumentação , Humanos , Modelos Teóricos
6.
Biomed Microdevices ; 20(2): 37, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654553

RESUMO

In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.


Assuntos
Retroalimentação , Fenômenos Mecânicos , Procedimentos Cirúrgicos Robóticos/instrumentação , Desenho de Equipamento , Retroalimentação Sensorial , Humanos , Fatores de Tempo , Procedimentos Cirúrgicos Vasculares/instrumentação
7.
Biomed Microdevices ; 20(1): 20, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29460178

RESUMO

Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the overall accuracy of surgical operations and reduce the occupational risks of intervening physicians, such as radiation exposure and chronic neck/back pain. Several RVIRs have been used to operate catheters or guidewires accurately. However, a lack of cooperation between the catheters and guidewires results in the surgeon being unable to complete complex surgery by propelling the catheter/guidewire to the target position. Furthermore, it is a significant challenge to operate the catheter/guidewire accurately and detect their proximal force without damaging their surfaces. In this study, we introduce a novel method that allows catheters and guidewires to be operated simultaneously in complex surgery. Our method accurately captures force measurements and enables precisely controlled catheter and guidewire operation. A prototype is validated through various experiments. The results demonstrate the feasibility of the proposed RVIR to operate a catheter and guidewire accurately, detect the resistance forces, and complete complex surgical operations in a cooperative manner.


Assuntos
Cateterismo/instrumentação , Robótica/métodos , Dispositivos de Acesso Vascular , Procedimentos Cirúrgicos Vasculares/instrumentação , Cateterismo/métodos , Desenho de Equipamento , Humanos , Movimento (Física) , Robótica/instrumentação , Cirurgiões , Procedimentos Cirúrgicos Vasculares/métodos
8.
Biomed Microdevices ; 20(2): 22, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476379

RESUMO

The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.


Assuntos
Catéteres , Desenho de Equipamento/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Segurança
9.
Biomed Microdevices ; 20(3): 69, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30094504

RESUMO

When conducting endovascular interventional surgery, doctors usually experience high viscous resistance resulting from direct contact with blood when operating the guide wire in blood vessels, which reduces the operational efficiency. Improper operation can cause vascular injuries and greatly reduce surgical safety, sometimes leading to the death of the patient. This paper presents a new method that applies transverse microvibrations at the proximal end of a conventional passive guide wire to reduce viscous resistance. The effect of the proposed method in reducing the viscous resistance in the fluid is studied. The influences of the tube diameter, medium density, and applied vibration frequency on the viscous force are investigated. Finally, for endovascular therapy, a mathematical model of the viscous force of the guide wire based on the proposed method is established in the environment of human blood vessels to predict the magnitude of the viscous force exerted on the guide wire and analyze the drag reduction effect of the proposed method. The effectiveness of the proposed method in drag reduction and its feasibility in improving surgical safety are experimentally demonstrated. The experimental results indicate that the proposed method can assist the doctor during complicated and variable operation conditions.


Assuntos
Cateterismo/instrumentação , Procedimentos Endovasculares , Vibração , Desenho de Equipamento , Humanos , Modelos Teóricos , Viscosidade
10.
Biomed Microdevices ; 20(2): 50, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29926195

RESUMO

In this paper, a novel robot-assisted catheter operating system (RCOS) has been proposed as a method to reduce physical stress and X-ray exposure time to physicians during endovascular procedures. The unique design of this system allows the physician to apply conventional bedside catheterization skills (advance, retreat and rotate) to an input catheter, which is placed at the master side to control another patient catheter placed at the slave side. For this purpose, a magnetorheological (MR) fluids-based master haptic interface has been developed to measure the axial and radial motions of an input catheter, as well as to provide the haptic feedback to the physician during the operation. In order to achieve a quick response of the haptic force in the master haptic interface, a hall sensor-based closed-loop control strategy is employed. In slave side, a catheter manipulator is presented to deliver the patient catheter, according to position commands received from the master haptic interface. The contact forces between the patient catheter and blood vessel system can be measured by designed force sensor unit of catheter manipulator. Four levels of haptic force are provided to make the operator aware of the resistance encountered by the patient catheter during the insertion procedure. The catheter manipulator was evaluated for precision positioning. The time lag from the sensed motion to replicated motion is tested. To verify the efficacy of the proposed haptic feedback method, the evaluation experiments in vitro are carried out. The results demonstrate that the proposed system has the ability to enable decreasing the contact forces between the catheter and vasculature.


Assuntos
Catéteres , Retroalimentação Sensorial , Procedimentos Cirúrgicos Robóticos/instrumentação , Fenômenos Mecânicos
11.
Biomed Microdevices ; 20(2): 33, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29610988

RESUMO

Vascular interventional surgery has its advantages compared to traditional operation. Master-slave robotic technology can further improve the operation accuracy, efficiency and safety of this complicated and high risk surgery. However, on-line acquisition of operating force information of catheter and guidewire remains to be a significant obstacle on the path to enhancing robotic surgery safety. Thus, a novel slave manipulator is proposed in this paper to realize on-line sensing of guidewire torsional operating torque and axial operation force during robotic assisted operations. A strain sensor is specially designed to detect the small scale torsional operation torque with low rotational frequency. Additionally, the axial operating force is detected via a load cell, which is incorporated into a sliding mechanism to eliminate the influence of friction. For validation, calibration and performance evaluation experiments are conducted. The results indicate that the proposed operation torque and force detection device is effective. Thus, it can provide the foundation for enabling accurate haptic feedback to the surgeon to improve surgical safety.


Assuntos
Fenômenos Mecânicos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Vasculares/instrumentação , Calibragem , Desenho de Equipamento , Torque
12.
Biomed Microdevices ; 20(2): 34, 2018 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627886

RESUMO

Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the accuracy of surgical operations and reduce the number of occupational risks sustained by intervening physicians, such as radiation exposure and chronic neck/back pain. However, complex control of the RVIRs improves the doctor's operation difficulty and reduces the operation efficiency. Furthermore, incomplete sterilization of the RVIRs will increase the risk of infection, or even cause medical accidents. In this study, we introduced a novel method that provides higher operation efficiency than a previous prototype and allows for complete robot sterilization. A prototype was fabricated and validated through laboratory setting experiments and an in-human experiment. The results illustrated that the proposed RVIR has better performance compared with the previous prototype, and preliminarily demonstrated that the proposed RVIR has good safety and reliability and can be used in clinical surgeries.


Assuntos
Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Vasculares/instrumentação , Desenho de Equipamento , Humanos , Fatores de Tempo
13.
Sensors (Basel) ; 17(4)2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28420134

RESUMO

With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

14.
Biomed Microdevices ; 18(5): 76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27499092

RESUMO

In this paper, we proposed a novel master-slave robotic catheterization system with force feedback for VIS (Vascular Interventional Surgery). The force feedback to the operator on the master side is the key factor to improve the safety during VIS. The developed system used the MR (magneto rheological) fluid to realize force feedback, and it used the developed multidimensional monitoring interface to realize the visualization of force feedback, the developed multidimensional monitoring interface can monitor the motion information of the catheter and contact force between catheter tip or side wall and blood vessel wall, and the motion data of the catheter was collected and generated diagram for reference to surgeon. We have developed a force sensor array to detect the contact force between catheter tip or side wall and blood vessel wall. The force information was detected by the developed contact force sensor array when the catheter contacted with the blood vessel. The force feedback and multidimensional information monitoring interface evaluation experiments were done, the tracking characteristic evaluation experiments were also carried out, the experimental results indicated that the developed novel robotic catheterization system with force feedback and visualization of force feedback is effective for VIS, it can improve the safety during VIS.


Assuntos
Cateterismo/instrumentação , Retroalimentação , Fenômenos Mecânicos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Vasculares/instrumentação , Desenho de Equipamento , Interface Usuário-Computador
15.
Biomed Eng Online ; 15: 35, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048290

RESUMO

BACKGROUND: The emergence and development of robot assistant interventional vascular surgery technologies have benefited many patients with cardiovascular or cerebrovascular diseases. Due to the absence of effective training measures, these new advanced technologies have not been fully utilized and only few experienced surgeons can perform such complicated surgeries so far. In order to solve such problems, virtual reality based vascular interventional surgery training system, a promising way to train young surgeons or assist experienced surgeons to perform surgery, has been widely studied. METHODS: In this paper, we mainly conduct a thorough study on both reliable deformation and high real-time performance of an interactive surgery training system. An efficient hybrid geometric blood vessel model which handles the collision detection query and vascular deformation calculation separately is employed to enhance the real-time performance of our surgery training system. In addition, a position-based dynamic approach with volume conservation constraint is used to improve the vascular deformation result. Finally, a hash table based spatial adaptive acceleration algorithm which makes the training system much more efficient and reliable is described. RESULTS: Several necessary experiments are conducted to validate the vascular deformation scheme presented in this paper. From the results we can see that the position-based dynamic modeling method with volume conservation constraint can prevent the vascular deformation from the issue of penetration. In addition, the deformation calculation with spatial acceleration algorithm has enhanced the real-time performance significantly. CONCLUSION: The corresponding experimental results indicate that both the hybrid geometric blood vessel model and the hash table based spatial adaptive acceleration algorithm can enhance the performance of our surgery training system greatly without losing the deformation accuracy.


Assuntos
Aprendizado de Máquina , Robótica , Procedimentos Cirúrgicos Vasculares , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/fisiologia , Modelos Anatômicos
16.
Biomed Microdevices ; 17(2): 31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681973

RESUMO

Magnetically actuated microrobots for such tools have potential accomplish procedures in biological and medical applications. In this paper, a novel magnetically actuated hybrid microrobot with hybrid motion driven by an electromagnetic actuation system has been proposed. An o-ring type permanent magnet is embedded in the hybrid microrobot as an actuator driven by rotational magnetic field which is generated by a 3 axes Helmholtz coils. It is composed by two motion mechanisms. One is the spiral jet motion moved by rotating its body. The other one is fin motion moved by vibrating its body. Because only one permanent magnet is used inside the hybrid microrobot, two motions can be controlled separately without any interference. The hybrid microrobot can change its two motions to realize multi-DOFs movement and flexibility motion. The verified experiments are conducted in the pipe. The experimental results indicate that the moving speed can be controlled by adjusting the magnetic field changing frequency and the direction of motion can be controlled by changing the magnetic field direction.


Assuntos
Robótica/instrumentação , Robótica/métodos , Fenômenos Eletromagnéticos , Desenho de Equipamento , Lasers , Campos Magnéticos , Miniaturização , Movimento (Física) , Polietilenotereftalatos/química
17.
Sensors (Basel) ; 15(4): 8232-52, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25856331

RESUMO

A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.


Assuntos
Algoritmos , Inteligência Artificial , Robótica
18.
Sensors (Basel) ; 15(4): 9022-38, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25894941

RESUMO

The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement.


Assuntos
Eletromiografia/métodos , Máquina de Vetores de Suporte
19.
Sensors (Basel) ; 15(5): 11511-27, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25996511

RESUMO

Many stroke patients are expected to rehabilitate at home, which limits their access to proper rehabilitation equipment, treatment, or assessment by therapists. We have developed a novel telerehabilitation system that incorporates a human-upper-limb-like device and an exoskeleton device. The system is designed to provide the feeling of real therapist-patient contact via telerehabilitation. We applied the principle of a series elastic actuator to both the master and slave devices. On the master side, the therapist can operate the device in a rehabilitation center. When performing passive training, the master device can detect the therapist's motion while controlling the deflection of elastic elements to near-zero, and the patient can receive the motion via the exoskeleton device. When performing active training, the design of the force-sensing mechanism in the master device can detect the assisting force added by the therapist. The force-sensing mechanism also allows force detection with an angle sensor. Patients' safety is guaranteed by monitoring the motor's current from the exoskeleton device. To compensate for any possible time delay or data loss, a torque-limiter mechanism was also designed in the exoskeleton device for patients' safety. Finally, we successfully performed a system performance test for passive training with transmission control protocol/internet protocol communication.


Assuntos
Fenômenos Biomecânicos/fisiologia , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral , Telemedicina/instrumentação , Adulto , Desenho de Equipamento , Humanos , Masculino
20.
J Med Biol Eng ; 35(2): 165-177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25960705

RESUMO

This paper presents a quantitative representation method for the upper-limb elbow joint angle using only electromyography (EMG) signals for continuous elbow joint voluntary flexion and extension in the sagittal plane. The dynamics relation between the musculotendon force exerted by the biceps brachii muscle and the elbow joint angle is developed for a modified musculoskeletal model. Based on the dynamics model, a quadratic-like quantitative relationship between EMG signals and the elbow joint angle is built using a Hill-type-based muscular model. Furthermore, a state switching model is designed to stabilize the transition of EMG signals between different muscle contraction motions during the whole movement. To evaluate the efficiency of the method, ten subjects performed continuous experiments during a 4-day period and five of them performed a subsequent consecutive stepping test. The results were calculated in real-time and used as control reference to drive an exoskeleton device bilaterally. The experimental results indicate that the proposed method can provide suitable prediction results with root-mean-square (RMS) errors of below 10° in continuous motion and RMS errors of below 10° in stepping motion with 20° and 30° increments. It is also easier to calibrate and implement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA