RESUMO
Phenylalanine hydroxylase (PAH) is involved in immune defence reactions by providing the starting material, tyrosine, to synthesise catecholamines and melanin. PAH is an important metabolic enzyme of aromatic amino acids and the rate-limiting enzyme in the hydroxylation of amino acid phenylalanine to tyrosine. In the present study, a PAH gene, LvPAH, was cloned and identified from Litopenaeus vannamei. The open reading frame (ORF) of LvPAH was 1383 bp, encoding a protein of 460 amino acids comprised of an ACT domain and a Biopterin_H domain. LvPAH was constitutively expressed in healthy L. vannamei, with the highest expression levels in the eyestalk and the lowest in the hepatopancreas. Both white spot syndrome virus (WSSV) and Vibrio parahaemolyticus infection upregulated LvPAH expression in hemocytes, hepatopancreas and gills of L. vannamei. Inhibition of LvPAH resulted in a significantly lower survival rate of L. vannamei after WSSV infection than the control group, consistent with the observation that WSSV viral load was significantly higher in LvPAH-silenced L. vannamei. After a V. parahaemolyticus challenge, there was no significant difference between the survival rate of LvPAH-silenced and the control L. vannamei. However, the load of V. parahaemolyticus in LvPAH-silenced L. vannamei was significantly higher than the control population for L. vannamei. The effect of LvPAH on L. vannamei from a neuroendocrinological perspective was assessed by measuring l-DOPA, dopamine (DA) and noradrenaline (NE) levels in the hemocytes after the knockdown of LvPAH. The results showed that phenoloxidase (PO), l-DOPA and DA levels in the hemolymph of LvPAH-silenced L. vannamei were significantly decreased starting from 24hpi. In contrast, the NE levels in the hemolymph of shrimp decreased significantly at first and then increased. The results suggest that LvPAH may play an important role in antiviral and bacterial immunity in L. vannamei.