Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Sci Technol ; 58(40): 17948-17958, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39316547

RESUMO

This study demonstrates that the oxidation of bromide by birnessite (δ-MnO2) results in the concurrent production of soluble manganese (Mn(II)) and reactive bromine (RBr) species in frozen solutions, a process not observed in aqueous solutions. This enhanced oxidation in ice is attributed to the concentration of protons, birnessite, or bromide in the ice grain boundary region. Furthermore, different types of commercial manganese oxides can also oxidize bromide to RBr and release Mn(II) in ice. The presence of fulvic acid (FA) further increases the simultaneous production of RBr and Mn(II) in ice, accompanying the formation of organobromine compounds (OBCs). In frozen δ-MnO2/Br-/FA system, a significant increase in OBCs, mainly highly unsaturated and phenolic compounds, was detected using Fourier transform ion cyclotron resonance mass spectrometry. A marked contrast was observed in the number of OBCs formed in frozen solutions (853 and 415 OBCs at initial pH 3.0 and 5.8, respectively) compared to their aqueous counterparts (11 and 23 OBCs). These findings introduce a new pathway for the formation of RBr, Mn(II), and OBCs in ice, highlighting the need for further research on the environmental fate of bromide and manganese.


Assuntos
Brometos , Congelamento , Compostos de Manganês , Oxirredução , Óxidos , Compostos de Manganês/química , Óxidos/química , Brometos/química , Solubilidade , Benzopiranos/química , Bromo/química
2.
Environ Res ; : 120058, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326650

RESUMO

In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.

3.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37908164

RESUMO

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Assuntos
Adipogenia , Lantânio , Camundongos , Animais , Lantânio/toxicidade , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt , beta Catenina/metabolismo , Diferenciação Celular
4.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460407

RESUMO

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Assuntos
Acetatos , Clormequat , Sobrecarga de Ferro , Fenóis , Espermatogênese , Animais , Masculino , Camundongos , Ratos , Clormequat/metabolismo , Clormequat/toxicidade , Sobrecarga de Ferro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sementes , Espermatogênese/efeitos dos fármacos , Testículo , eIF-2 Quinase/efeitos dos fármacos , eIF-2 Quinase/metabolismo
5.
Environ Sci Technol ; 57(43): 16662-16672, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37782530

RESUMO

Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.


Assuntos
Elétrons , Poluentes Químicos da Água , Ferro/química , Compostos Férricos , Oxirredução , Compostos Orgânicos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 57(30): 11122-11133, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463333

RESUMO

Biodenitrification plays a vital role in the remediation of nitrogen-contaminated water. However, influent with a low C/N ratio limits the efficiency of denitrification and causes the accumulation/emission of noxious intermediates. In this study, ß-cyclodextrin-functionalized biochar (BC@ß-CD) was synthesized and applied to promote the denitrification performance of Paracoccus denitrificans when the C/N was only 4, accompanied by increased nitrate reduction efficiency and lower nitrite accumulation and nitrous oxide emission. Transcriptomic and enzymatic activity analyses showed BC@ß-CD enhanced glucose degradation by promoting the activities of glycolysis (EMP), the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. Notably, BC@ß-CD drove a great generation of electron donors by stimulating the TCA cycle, causing a greater supply of substrate metabolism to denitrification. Meanwhile, the promotional effect of BC@ß-CD on oxidative phosphorylation accelerates electron transfer and ATP synthesis. Moreover, the presence of BC@ß-CD increased the intracellular iron level, causing further improved electron utilization in denitrification. BC@ß-CD helped to remove metabolites and induced positive feedback on the metabolism of P. denitrificans. Collectively, these effects elevated the glucose utilization for supporting denitrification from 36.37% to 51.19%. This study reveals the great potential of BC@ß-CD for enhancing denitrification under low C/N conditions and illustrates a potential application approach for ß-CD in wastewater bioremediation.


Assuntos
Elétrons , beta-Ciclodextrinas , Carvão Vegetal , Nitratos/metabolismo , Desnitrificação , Nitrogênio/metabolismo
7.
Environ Res ; 231(Pt 1): 115996, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105290

RESUMO

Accurately determining the second-order rate constant with eaq- (keaq-) for organic compounds (OCs) is crucial in the eaq- induced advanced reduction processes (ARPs). In this study, we collected 867 keaq- values at different pHs from peer-reviewed publications and applied machine learning (ML) algorithm-XGBoost and deep learning (DL) algorithm-convolutional neural network (CNN) to predict keaq-. Our results demonstrated that the CNN model with transfer learning and data augmentation (CNN-TL&DA) greatly improved the prediction results and overcame over-fitting. Furthermore, we compared the ML/DL modeling methods and found that the CNN-TL&DA, which combined molecular images (MI), achieved the best overall performance (R2test = 0.896, RMSEtest = 0.362, MAEtest = 0.261) when compared to the XGBoost algorithm combined with Mordred descriptors (MD) (0.692, RMSEtest = 0.622, MAEtest = 0.399) and Morgan fingerprint (MF) (R2test = 0.512, RMSEtest = 0.783, MAEtest = 0.520). Moreover, the interpretation of the MD-XGBoost and MF-XGBoost models using the SHAP method revealed the significance of MDs (e.g., molecular size, branching, electron distribution, polarizability, and bond types), MFs (e.g, aromatic carbon, carbonyl oxygen, nitrogen, and halogen) and environmental conditions (e.g., pH) that effectively influence the keaq- prediction. The interpretation of the 2D molecular image-CNN (MI-CNN) models using the Grad-CAM method showed that they correctly identified key functional groups such as -CN, -NO2, and -X functional groups that can increase the keaq- values. Additionally, almost all electron-withdrawing groups and a small part of electron-donating groups for the MI-CNN model can be highlighted for estimating keaq-. Overall, our results suggest that the CNN approach has smaller errors when compared to ML algorithms, making it a promising candidate for predicting other rate constants.


Assuntos
Aprendizado Profundo , Elétrons , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos
8.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625537

RESUMO

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

9.
J Environ Manage ; 329: 116904, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528943

RESUMO

The apparent second-order rate constant with hexavalent ferrate (Fe(VI)) (kFe(VI)) is a key indicator to evaluate the removal efficiency of a molecule by Fe(VI) oxidation. kFe(VI) is often determined by experiment, but such measurements can hardly catch up with the rapid growth of organic compounds (OCs). To address this issue, in this study, a total of 437 experimental second-order kFe(VI) rate constants at a range of conditions (pH and temperature) were used to train four machine learning (ML) algorithms (lasso regression (LR), ridge regression (RR), extreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM)). Using the Morgan fingerprint (MF)) of a range of organic compounds (OCs) as the input, the performance of the four algorithms was comprehensively compared with respect to the coefficient of determination (R2) and root-mean-square error (RMSE). It is shown that the RR, XGBoost, and LightGBM models displayed generally acceptable performance kFe(VI) (R2test > 0.7). In addition, the shapely additive explanation (SHAP) and feature importance methods were employed to interpret the XGBoost/LightGBM and RR models, respectively. The results showed that the XGBoost/LightGBM and RR models suggestd pH as the most important predictor and the tree-based models elucidate how electron-donating and electron-withdrawing groups influence the reactivity of the Fe(VI) species. In addition, the RR model share eight common features, including pH, with the two tree-based models. This work provides a fast and acceptable method for predicting kFe(VI) values and can help researchers better understand the degradation behavior of OCs by Fe(VI) oxidation from the perspective of molecular structure.


Assuntos
Ferro , Poluentes Químicos da Água , Cinética , Ferro/química , Oxirredução , Água , Compostos Orgânicos , Poluentes Químicos da Água/química
10.
Environ Res ; 204(Pt A): 111947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34454935

RESUMO

The medium chain fatty acids (MCFAs) produced from organic wastes can replace part fossil-fuel-based products to promote the sustainable development of economy and environment. However, the selection and collocation of feedstocks for MCFAs production are lack of reference basis. This study thereby aimed to investigate how the commonly used electron donor (ED) and substrate configuration affect MCFAs synthesis and then obtain the optimal substrate composition. It was found that the optimized ratios for ethanol/acetate, lactate/acetate, and ethanol/lactate/acetate were 3/1, 2/1, and 2/1/1, respectively, and the optimal substrate concentration was 400 mM C. Combining ethanol and lactate as co-EDs effectively concentrated substrate-carbon-flow (increased by 20-28% than sole ED) on MCFAs synthesis by promoting the elongation of butyrate and reutilization of by-products. As a result, the higher MCFAs yield of 646.22 mg COD/g COD and selectivity of 67.72% were obtained from co-EDs than those from sole ED. Moreover, the key functional bacteria enriched under different ED were also discrepant, which were Clostridium sensu stricto for ethanol, Corynebacterium for lactate, and Veillonella and Oscillibacter for ethanol-lactate, respectively. This study provided a basic but significant reference for the scale-up MCFAs production.


Assuntos
Ácidos Graxos , Microbiota , Acetatos , Etanol , Fermentação
11.
Environ Res ; 212(Pt B): 113294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460635

RESUMO

Due to its wide application and high value, the production of medium chain fatty acids (MCFAs) from waste biomass has become one of the worldwide research hotspots. Increasing the carbon element participation from short-chain fatty acids to the form of MCFAs is also conductive to reduce the release of biogas from biological treatment process, because carbon is in the form of MCFAs instead of biogas which directly contribute to process carbon emissions reduction. However, many barriers limiting MCFAs production and application remain to be resolved. Aiming continuous MCFAs production from lactate-rich waste biomass, this study optimized the operation conditions and clarified the main limiting factors and possible mechanisms. The maximum caproic acid concentration of 2.757 g/L were obtained at the Upflow Velocity (ULV) of 1.15 m/h and pH 4.9-5.1. Caproiciproducens, Pseudoramibacter, norank_f_Eubacteriaceae, and Oscillibacter were identified to be the dominant microbial genus responsible for MCFAs production from lactate. The reduction of carbon emissions calculation was also studied in the present processes.


Assuntos
Biocombustíveis , Carbono , Ácidos Graxos , Fermentação , Lactatos
12.
Environ Sci Technol ; 55(18): 12640-12651, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34464118

RESUMO

Herein, we report that Co(II)-doped g-C3N4 can efficiently trigger peracetic acid (PAA) oxidation of various sulfonamides (SAs) in a wide pH range. Quite different from the traditional radical-generating or typical nonradical-involved (i.e., singlet oxygenation and mediated electron transfer) catalytic systems, the PAA activation follows a novel nonradical pathway with unprecedented high-valent cobalt-oxo species [Co(IV)] as the dominant reactive species. Our experiments and density functional theory calculations indicate that the Co atom fixated into the nitrogen pots of g-C3N4 serves as the main active site, enabling dissociation of the adsorbed PAA and conversion of the coordinated Co(II) to Co(IV) via a unique two-electron transfer mechanism. Considering Co(IV) to be highly electrophilic in nature, different substituents (i.e., five-membered and six-membered heterocyclic moieties) on the SAs could affect their nucleophilicity, thus leading to the differences in degradation efficiency and transformation pathway. Also, benefiting from the selective oxidation of Co(IV), the established oxidative system exhibits excellent anti-interference capacity and achieves satisfactory decontamination performance under actual water conditions. This study provides a new nonradical approach to degrade SAs by efficiently activating PAA via heterogeneous cobalt-complexed catalysts.


Assuntos
Cobalto , Ácido Peracético , Antibacterianos , Oxirredução , Sulfonamidas
13.
BMC Bioinformatics ; 21(Suppl 16): 540, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33323107

RESUMO

BACKGROUND: Single-cell RNA sequencing can be used to fairly determine cell types, which is beneficial to the medical field, especially the many recent studies on COVID-19. Generally, single-cell RNA data analysis pipelines include data normalization, size reduction, and unsupervised clustering. However, different normalization and size reduction methods will significantly affect the results of clustering and cell type enrichment analysis. Choices of preprocessing paths is crucial in scRNA-Seq data mining, because a proper preprocessing path can extract more important information from complex raw data and lead to more accurate clustering results. RESULTS: We proposed a method called NDRindex (Normalization and Dimensionality Reduction index) to evaluate data quality of outcomes of normalization and dimensionality reduction methods. The method includes a function to calculate the degree of data aggregation, which is the key to measuring data quality before clustering. For the five single-cell RNA sequence datasets we tested, the results proved the efficacy and accuracy of our index. CONCLUSIONS: This method we introduce focuses on filling the blanks in the selection of preprocessing paths, and the result proves its effectiveness and accuracy. Our research provides useful indicators for the evaluation of RNA-Seq data.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos/classificação , Bases de Dados de Ácidos Nucleicos/normas , RNA-Seq/métodos , COVID-19/virologia , Análise por Conglomerados , Humanos , SARS-CoV-2/genética
14.
Bioresour Technol ; 411: 131334, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39181515

RESUMO

Wastewater treatment innovation toward resource recovery facilities raises concerns about the adsorption and bio-degradation (A-B) process. This study integrated enhanced biological phosphorus removal (EBPR) into the A-stage for real domestic sewage treatment using the short sludge retention time (S-SRT) approach. The S-SRT approach resulted in outstanding phosphorus (over 90 %) and COD removal (approximately 88 %), increased sludge yield and organic matter content, and a 1.68-fold increase in energy recovery efficiency by sludge anaerobic digestion. The inhibition of nitrification relieved competition for carbon sources between denitrification and phosphorus removal, allowing for the enrichment of phosphorus-accumulating organisms (PAOs) such as Tetrasphaera and Halomonas, leading to enhanced phosphorus removal activities. Biological adsorption also plays a significant role in achieving steady phosphorus removal performance. This study demonstrates the potential of the S-SRT approach as an effective strategy for simultaneous carbon and phosphorus capture in the A-stage, contributing to energy and nutrient recovery from sewage.


Assuntos
Fósforo , Esgotos , Esgotos/química , Adsorção , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Carbono/química
15.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891111

RESUMO

Ferroptosis hallmarked by lipid peroxidation and iron homeostasis imbalance is involved in the occurrence and development of various diseases. The plant growth regulator chlormequat chloride (CCC) can contribute to the causality and exacerbation of reproductive disorders. However, the mechanism by which CCC may cause Leydig cell attenuation remains poorly understood. In this study, TM3 Leydig cells were used to investigate the inhibitory effect of CCC on cell growth and its possible mechanism. The results showed that CCC caused apoptosis, pyroptosis, ferroptosis and necroinflammation in TM3 cells. By comparing the effects of ferroptosis inhibitor Ferrostatin-1 (Fer-1) and pan-Caspase inhibitor Z-VAD-FMK (ZVF) on lipid peroxidation and Caspase-mediated regulated cell death (RCD), we found that Fer-1 was better at rescuing the growth of TM3 cells than ZVF. Although ZVF reduced mitochondrial ROS level and inhibited the activation of Caspase3 and Caspase1, it could not significantly ameliorate lipid peroxidation and the levels of IL-1ß and HMGB1 like Fer-1. Therefore, ferroptosis might be a key non apoptotic RCD mode responsible for CCC-driven inflammation, leading to weakened viability and proliferation of TM3 cells. In addition, overexpression of ferritin light chain (FTL) promoted the resistance of TM3 cells to CCC-induced ferroptosis-mediated inflammation and to some extent improved the inhibition of viability and proliferation. Altogether, ferroptosis-initiated inflammation might play a key role in CCC-impaired TM3 cell growth.


Assuntos
Proliferação de Células , Ferroptose , Inflamação , Células Intersticiais do Testículo , Ferroptose/efeitos dos fármacos , Animais , Masculino , Camundongos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Inflamação/patologia , Inflamação/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Clorometilcetonas de Aminoácidos/farmacologia , Cicloexilaminas , Fenilenodiaminas
16.
Food Chem Toxicol ; 185: 114475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286265

RESUMO

Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.


Assuntos
Acetatos , Clormequat , Fenóis , Proteínas Proto-Oncogênicas c-akt , Camundongos , Ratos , Masculino , Animais , Clormequat/metabolismo , Clormequat/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Calmodulina/metabolismo , Calmodulina/farmacologia , Sêmen/metabolismo , Transdução de Sinais , Espermatozoides , Tirosina/metabolismo
17.
Bioresour Technol ; 406: 130958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876284

RESUMO

To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.


Assuntos
Carvão Vegetal , Glycine max , Ácido Láctico , Glycine max/metabolismo , Carvão Vegetal/química , Ácido Láctico/metabolismo , Fermentação
18.
Bioresour Technol ; 413: 131457, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39284373

RESUMO

The integration of biochar into microbial Chain Elongation (CE) proves to be an effective tool of producing high-value bio-based products. This study innovatively applied biochar fabricated under microwave irradiation with carbon fiber cloth assistance into CE system. Results highlighted that microwave biochar achieved maximal CE efficiency yielding 8 g COD/L, with 3-fold increase to the blank group devoid of any biochar. Microwave biochar also obtained the highest substrate utilization rate of 94 %, while conventional biochar group recorded 90 % and the blank group was of 74 %. Mechanistic insights revealed that the reductive surface properties facilitated CE performance, which is relevant to fostering dominant genera of Parabacteroides, Bacteroides, and Macellibacteroides. By metagenomics, microwave biochar up-regulated functional genes and enzymes involved in CE process including ethanol oxidation, the reverse ß-oxidation pathway, and the fatty acid biosynthesis pathway. This study effectively facilitated caproate production by utilizing a new microwave biochar preparation strategy.


Assuntos
Carvão Vegetal , Micro-Ondas , Oxirredução , Carvão Vegetal/química , Pirólise
19.
Food Chem Toxicol ; 190: 114790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849044

RESUMO

Chlormequat chloride (CCC), a widely used plant growth regulator, is a choline analogue that has been shown to have endocrine-disrupting effects. Previous studies have shown that maternal exposure to CCC could induce hyperlipidemia and growth disruption in rat offspring. This study aims to further investigate the effects of peripubertal exposure to CCC on pubertal development and lipid homeostasis, as well as the underlying mechanisms. In vivo, male weanling rats were exposed to CCC (0, 20, 75 and 200 mg/kg bw/day) from post-natal day 21-60 via daily oral gavage. The results in rats showed that 75 mg/kg CCC treatment induced hepatic steatosis, predominantly microvesicular steatosis with a small amount of macrovesicular steatosis, in rat livers and 200 mg/kg CCC treatment induced liver damage including inflammatory infiltration, hepatic sinusoidal dilation and necrosis. In vitro, HepG2 cells were treated with CCC (0, 30, 60, 120, 240 and 480 µg/mL) for 24 h. And the results showed that CCC above 120 µg/mL induced an increase in triglyceride and neutral lipid levels of HepG2 cells. Mechanism exploration revealed that CCC treatment promoted the activation of mTOR/SREBP1 signalling pathway and inhibited activation of AMPK in both in vivo rat livers and in vitro HepG2 cells. Treatment with AMPK activator Acadesine (AICAR) could alleviate the lipid accumulation in HepG2 cells induced by CCC. Collectively, the present results indicate that CCC might induce hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition.


Assuntos
Proteínas Quinases Ativadas por AMP , Clormequat , Fígado Gorduroso , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Masculino , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ratos , Clormequat/toxicidade , Ratos Sprague-Dawley , Fígado/efeitos dos fármacos , Fígado/metabolismo
20.
Water Res ; 254: 121417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461597

RESUMO

Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments.


Assuntos
Carbono , Poluentes Ambientais , Peróxidos , Oxirredução , Transporte de Elétrons , Eletrônica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA