Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Phytother Res ; 38(2): 1089-1103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168755

RESUMO

Autism spectrum disorder (ASD) is a multifaceted neuropsychiatric condition for which effective drug therapy for core clinical symptoms remains elusive. Lotusine, known for its neuroprotective properties in the treatment of neurological disorders, holds potential in addressing ASD. Nevertheless, its specific efficacy in ASD remains uncertain. This study aims to investigate the therapeutic potential of lotusine in ASD and elucidate the underlying molecular mechanisms. We induced an ASD mouse model through intracerebroventricular-propionic acid (ICV-PPA) injection for 7 days, followed by lotusine administration for 5 days. The efficacy of lotusine was evaluated through a battery of behavioral tests, including the three-chamber social test. The underlying mechanisms of lotusine action in ameliorating ASD-like behavior were investigated in the medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings, western blotting, immunofluorescence staining, molecular docking, and cellular thermal shift assay. The efficacy and mechanisms of lotusine were further validated in vitro. Lotusine effectively alleviated social deficits induced by ICV-PPA injection in mice by counteracting the reduction in miniature excitatory postsynaptic current frequency within the mPFC. Moreover, lotusine enhanced neuronal activity and ameliorated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysfunction in ICV-PPA infusion mice by upregulating c-fos, p-GluA1 Ser 845, and p-GluA1 Ser 831 protein levels within the mPFC. Our findings also suggest that lotusine may exert its effects through modulation of the D1 dopamine receptor (DRD1). Furthermore, the rescuing effects of lotusine were nullified by a DRD1 antagonist in PC12 cells. In summary, our results revealed that lotusine ameliorates ASD-like behavior through targeted modulation of DRD1, ultimately enhancing excitatory synaptic transmission. These findings highlight the potential of lotusine as a nutritional supplement in the treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Dopamina , Isoquinolinas , Propionatos , Ratos , Camundongos , Animais , Dopamina/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Simulação de Acoplamento Molecular , Receptores de Dopamina D1/metabolismo , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 456-460, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38802904

RESUMO

OBJECTIVES: To explore the value of metagenomic next-generation sequencing (mNGS) technology in the etiological diagnosis of sepsis in preterm infants following antibiotic use. METHODS: A retrospective analysis of medical records for 45 preterm infants with sepsis who were treated at Henan Provincial People's Hospital. All patients received antibiotic treatment for ≥3 days and underwent both blood culture and mNGS testing. The detection rates of pathogens by blood culture and mNGS testing were compared. RESULTS: The positive detection rate of pathogens by blood mNGS was higher than that by blood culture (44% vs 4%; P<0.001). Blood mNGS detected 28 strains of pathogens, including 23 bacteria, 4 fungi, and 1 Ureaplasma parvum. Blood culture identified one case each of Rhodotorula mucilaginosa and Klebsiella pneumoniae. In the group treated with antibiotics for >10 days, the positive rate of blood mNGS testing was higher than that of blood culture (40% vs 3%; P<0.001); similarly, in the group treated with antibiotics for ≤10 days, the positive rate of blood mNGS testing was also higher than that of blood culture (53% vs 7%; P=0.020). Treatment plans were adjusted based on blood mNGS results for 13 patients, with an effectiveness rate of 85% (11/13). CONCLUSIONS: In preterm infants with sepsis following antibiotic use, the positive rate of pathogen detection by blood mNGS is higher than that by blood culture and is unaffected by the duration of antibiotic use. Therefore, mNGS testing can be considered for confirming pathogens when clinical suspicion of infection is high but blood culture fails to detect the pathogen.


Assuntos
Antibacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Recém-Nascido Prematuro , Metagenômica , Sepse , Humanos , Recém-Nascido , Antibacterianos/uso terapêutico , Sepse/microbiologia , Sepse/tratamento farmacológico , Masculino , Feminino , Estudos Retrospectivos , Metagenômica/métodos
3.
Chembiochem ; 24(16): e202300169, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060212

RESUMO

Protein post-translational modifications (PTMs) regulate nearly all biological processes in eukaryotic cells, and synthetic PTM protein tools are widely used to detect the activity of the related enzymes and identify the interacting proteins in cell lysates. Recently, the study of these enzymes and the interacting proteome has been accomplished in live cells using cell-permeable PTM protein tools. In this concept, we will introduce cell penetrating techniques, the syntheses of cell-permeable PTM protein tools, and offer some future perspective.


Assuntos
Histonas , Ubiquitina , Histonas/metabolismo , Ubiquitina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
4.
Am J Pathol ; 192(12): 1725-1744, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150507

RESUMO

Large conductance Ca2+-activated potassium (BKCa) channels are regulated by intracellular free Ca2+ concentrations ([Ca2+]i) and channel protein phosphorylation. In hypercholesterolemia (HC), motility impairment of the sphincter of Oddi (SO) is associated with abnormal [Ca2+]i accumulation in smooth muscle cells of the rabbit SO (RSOSMCs), which is closely related to BKCa channel activity. However, the underlying mechanisms regulating channel activity remain unclear. In this study, an HC rabbit model was generated and used to investigate BKCa channel activity of RSOSMCs via SO muscle tone measurement in vitro and manometry in vivo, electrophysiological recording, intracellular calcium measurement, and Western blot analyses. BKCa channel activity was decreased, which correlated with [Ca2+]i overload and reduced tyrosine phosphorylation of the BKCa α-subunit in the HC group. The abnormal [Ca2+]i accumulation and decreased BKCa channel activity were partially restored by Na3VO4 pretreatment but worsened by genistein in RSOSMCs in the HC group. This study suggests that α-subunit tyrosine phosphorylation is required for [Ca2+]i to activate BKCa channels, and there is a negative feedback between the BKCa channel and the L-type voltage-dependent Ca2+ channel that regulates [Ca2+]i. This study provides direct evidence that tyrosine phosphorylation of BKCa α-subunits is required for [Ca2+]i to activate BKCa channels in RSOSMCs, which may be the underlying physiological and pathologic mechanism regulating the activity of BKCa channels in SO cells.


Assuntos
Canais de Potássio , Esfíncter da Ampola Hepatopancreática , Animais , Coelhos , Fosforilação , Processamento de Proteína Pós-Traducional , Tirosina
5.
J Basic Microbiol ; 63(5): 519-529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36538736

RESUMO

Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Animais , Bovinos , Humanos , Filogenia , Funções Verossimilhança , Infecções por Coronavirus/epidemiologia , Recombinação Genética , Doenças dos Bovinos/epidemiologia
6.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686425

RESUMO

MutS homolog 1 (MSH1) is involved in the recombining and repairing of organelle genomes and is essential for maintaining their stability. Previous studies indicated that the length of the gene varied greatly among species and detected species-specific partial gene duplications in Physcomitrella patens. However, there are critical gaps in the understanding of the gene size expansion, and the extent of the partial gene duplication of MSH1 remains unclear. Here, we screened MSH1 genes in 85 selected species with genome sequences representing the main clades of green plants (Viridiplantae). We identified the MSH1 gene in all lineages of green plants, except for nine incomplete species, for bioinformatics analysis. The gene is a singleton gene in most of the selected species with conserved amino acids and protein domains. Gene length varies greatly among the species, ranging from 3234 bp in Ostreococcus tauri to 805,861 bp in Cycas panzhihuaensis. The expansion of MSH1 repeatedly occurred in multiple clades, especially in Gymnosperms, Orchidaceae, and Chloranthus spicatus. MSH1 has exceptionally long introns in certain species due to the gene length expansion, and the longest intron even reaches 101,025 bp. And the gene length is positively correlated with the proportion of the transposable elements (TEs) in the introns. In addition, gene structure analysis indicated that the MSH1 of green plants had undergone parallel intron gains and losses in all major lineages. However, the intron number of seed plants (gymnosperm and angiosperm) is relatively stable. All the selected gymnosperms contain 22 introns except for Gnetum montanum and Welwitschia mirabilis, while all the selected angiosperm species preserve 21 introns except for the ANA grade. Notably, the coding region of MSH1 in algae presents an exceptionally high GC content (47.7% to 75.5%). Moreover, over one-third of the selected species contain species-specific partial gene duplications of MSH1, except for the conserved mosses-specific partial gene duplication. Additionally, we found conserved alternatively spliced MSH1 transcripts in five species. The study of MSH1 sheds light on the evolution of the long genes of green plants.


Assuntos
Magnoliopsida , Viridiplantae , Íntrons/genética , Duplicação Gênica , Processamento Alternativo , Biologia Computacional , Cycadopsida , Proteínas MutS
7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835385

RESUMO

Orchidaceae is one of the largest families of angiosperms. Considering the large number of species in this family and its symbiotic relationship with fungi, Orchidaceae provide an ideal model to study the evolution of plant mitogenomes. However, to date, there is only one draft mitochondrial genome of this family available. Here, we present a fully assembled and annotated sequence of the mitochondrial genome (mitogenome) of Paphiopedilum micranthum, a species with high economic and ornamental value. The mitogenome of P. micranthum was 447,368 bp in length and comprised 26 circular subgenomes ranging in size from 5973 bp to 32,281 bp. The genome encoded for 39 mitochondrial-origin, protein-coding genes; 16 tRNAs (three of plastome origin); three rRNAs; and 16 ORFs, while rpl10 and sdh3 were lost from the mitogenome. Moreover, interorganellar DNA transfer was identified in 14 of the 26 chromosomes. These plastid-derived DNA fragments represented 28.32% (46,273 bp) of the P. micranthum plastome, including 12 intact plastome origin genes. Remarkably, the mitogenome of P. micranthum and Gastrodia elata shared 18% (about 81 kb) of their mitochondrial DNA sequences. Additionally, we found a positive correlation between repeat length and recombination frequency. The mitogenome of P. micranthum had more compact and fragmented chromosomes compared to other species with multichromosomal structures. We suggest that repeat-mediated homologous recombination enables the dynamic structure of mitochondrial genomes in Orchidaceae.


Assuntos
Genoma Mitocondrial , Magnoliopsida , Orchidaceae , DNA Mitocondrial , Mitocôndrias/genética , Magnoliopsida/genética , Orchidaceae/genética , Filogenia
8.
BMC Plant Biol ; 21(1): 248, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058997

RESUMO

BACKGROUND: Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS: Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS: We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Orchidaceae/genética , Cloroplastos/genética , Rearranjo Gênico , Sequências Repetidas Invertidas , Filogenia
9.
Vet Res ; 52(1): 87, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130762

RESUMO

The porcine epidemic diarrhea virus (PEDV) causes a highly contagious disease in pigs, which is one of the most devastating viral diseases of swine in the world. In China, PEDV was first confirmed in 1984 and PEDV infections occurred sporadically from 1984 to early 2010. From late 2010 until present, PEDV infections have swept every province or region in China. In this study, we analyzed a total of 186 full-length spike genes and deduced proteins of all available complete genomes of PEDVs isolated in China during 2007-2019. A total of 28 potential recombination events were identified in the spike genes of PEDVs in China. Spike gene recombination not only expanded the genetic diversity of PEDVs in the GII genogroup, but also resulted in the emergence of a new evolutional branch GI-c during 2016-2018. In addition, comparative analysis of spike proteins between GI-a prototype virulent CV777 and GII strain AJ1102 reveals that the amino acid variations could affect 20 potential linear B cell epitopes, demonstrating a dramatic antigen drift in the spike protein. These results provide a thorough view of the information about the genetic and antigenic diversity of PEDVs circulating in China and therefore could benefit the development of suitable strategies for disease control.


Assuntos
Antígenos Virais/genética , Variação Genética , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/genética , Variação Antigênica , China , Genoma Viral , Estações do Ano
10.
Phytother Res ; 35(7): 3936-3944, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33856723

RESUMO

Anxiety disorders are a common frequently psychiatric symptom in patients that lead to disruption of daily life. Scutellarin (Scu) is the main component of Erigeron breviscapus, which has been used as a neuroprotective agent against glutamate-induced excitotoxicity. However, the potential effect of Scu on the stress-related neuropsychological disorders has not been clarified. In this study, Anxiety-like behavior was induced by acute restraint stress in mice. Scu were injected intraperitoneally (twice daily, 3 days). Results showed that Scu exhibited good protective activity on mice by decreasing transmitter release levels. Restraint stress caused significant anxiety like behavior in mice. Treatment of Scu could significantly improve the moving time of open arms in Elevated Plus Maze and central time on open field test. Scu treatment suppressed action potential firing frequency, restored excessive presynaptic quantal release, and down-regulated glutamatergic receptor expression levels in the prefrontal cortex (PFC) of stressed mice. GABAA Rα1 and GABAA γ2 expression in the brain PFC tissues of mice were nearly abrogated by Scu treatment. In stress-induced anxiety mice, stress can increase the frequency of mini excitatory postsynaptic currents (mEPSC), which can be reversed by Scu treatment. Therefore, Scu has a potent anxiolytic activity and may be valuable for the treatment of stress-induced anxiety disorders.


Assuntos
Ansiedade , Apigenina , Glucuronatos , Neurotransmissores/fisiologia , Animais , Ansiedade/tratamento farmacológico , Apigenina/farmacologia , Glucuronatos/farmacologia , Camundongos
11.
Glia ; 68(1): 27-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429156

RESUMO

Ischemic stroke leads to neuronal damage induced by excitotoxicity, inflammation, and oxidative stress. Astrocytes play diverse roles in stroke and ischemia-induced inflammation, and autophagy is critical for maintaining astrocytic functions. Our previous studies showed that the activation of G protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protected neurons from excitotoxicity. However, the role of astrocytic GPR30 in maintaining autophagy and neuroprotection remained unclear. In this study, we found that the neuroprotection induced by G1 (GPR30 agonist) in wild-type mice after a middle cerebral artery occlusion was completely blocked in GPR30 conventional knockout (KO) mice but partially attenuated in astrocytic or neuronal GPR30 KO mice. In cultured primary astrocytes, glutamate exposure induced astrocyte proliferation and decreased astrocyte autophagy by activating mammalian target of rapamycin (mTOR) and c-Jun N-terminal kinase (JNK) and inhibiting p38 mitogen-activated protein kinase (MAPK) pathway. G1 treatment restored autophagy to its basal level by regulating the p38 pathway but not the mTOR and JNK signaling pathways. Our findings revealed a key role of GPR30 in neuroprotection via the regulation of astrocyte autophagy and support astrocytic GPR30 as a potential drug target against ischemic brain damage.


Assuntos
Astrócitos/metabolismo , Autofagia/fisiologia , Fármacos Neuroprotetores/farmacologia , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/uso terapêutico , Quinolinas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
12.
Gynecol Endocrinol ; 36(10): 890-894, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32208782

RESUMO

We design this study to detect levels of Elabela (ELA) and Apelin (APLN) in women with and without gestational diabetes mellitus (GDM) in the second and third trimesters, and to identify whether there is any association between ELA, APLN, and metabolic parameters. Seventy-nine GDM and 80 control subjects in the second trimester and 87 GDM and 88 healthy subjects in the third trimester were included. In the second trimester, lower ELA levels [(14.1 versus 16.9) ng/ml, p = .025] and higher APLN levels [(1021.8 versus 923.5) pg/ml, p = .046] were observed in GDM patients compared to controls. ELA levels were positively correlated with fasting plasma glucose (FPG) (r = 0.423, p < .001) in the control group, and APLN levels were negatively correlated with triglycerides (TG) (r = -0.251, p = .025) in the control group and total cholesterol (TC) (r = -0.227, p = .044) in the GDM group. ELA appeared to be related to glucose metabolism and APLN is involved in lipid metabolism during pregnancy. The expression of ELA is significantly downregulated from the second trimester to the third trimester.


Assuntos
Apelina/sangue , Diabetes Gestacional/sangue , Hormônios Peptídicos/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Segundo Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/sangue
13.
J Neuroinflammation ; 16(1): 132, 2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31255170

RESUMO

BACKGROUND: Liver X receptors (LXRs), including LXRα and LXRß, are key regulators of transcriptional programs for both cholesterol homeostasis and inflammation in the brain. Here, the modes of action of LXRs and the epigenetic mechanisms regulating LXRß expression in anterior cingulate cortex (ACC) of chronic inflammatory pain (CIP) are investigated. METHODS: The deficit of LXR isoform and analgesic effect of LXR activation by GW3965 were evaluated using the mouse model of CIP induced by hindpaw injection of complete Freund's adjuvant (CFA). The mechanisms involved in GW-mediated analgesic effects were analyzed with immunohistochemical methods, ELISA, co-immunoprecipitation (Co-IP), Western blot, and electrophysiological recording. The epigenetic regulation of LXRß expression was investigated by chromatin immunoprecipitation, quantitative real-time PCR, and sequencing. RESULTS: We revealed that CFA insult led to LXRß reduction in ACC, which was associated with upregulated expression of histone deacetylase 5 (HDAC5), and knockdown of LXRß by shRNA led to thermal hyperalgesia. Co-IP showed that LXRß interacted with NF-κB p65 physically. LXRß activation by GW3965 exerted analgesic effects by inhibiting the nuclear translocation of NF-κB, reducing the phosphorylation of mitogen-activated protein kinases (MAPKs) in ACC, and decreasing the promoted input-output and enhanced mEPSC frequency in ACC neurons after CFA exposure. In vitro experiments confirmed that HDAC5 triggered histone deacetylation on the promoter region of Lxrß, resulting in downregulation of Lxrß transcription. CONCLUSION: These findings highlight an epigenetic mechanism underlying LXRß deficits linked to CIP, and LXRß activation may represent a potential novel target for the treatment of CIP with an alteration in inflammation responses and synaptic transmission in ACC.


Assuntos
Dor Crônica/metabolismo , Epigênese Genética/fisiologia , Adjuvante de Freund/toxicidade , Giro do Cíngulo/metabolismo , Histona Desacetilases/biossíntese , Receptores X do Fígado/metabolismo , Animais , Sequência de Bases , Dor Crônica/induzido quimicamente , Dor Crônica/genética , Epigênese Genética/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Histona Desacetilases/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27612915

RESUMO

BACKGROUND: Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. RESULTS: Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. CONCLUSIONS: NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Analgésicos/uso terapêutico , Dor do Câncer/tratamento farmacológico , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/diagnóstico por imagem , Dor do Câncer/diagnóstico por imagem , Dor do Câncer/etiologia , Dor do Câncer/patologia , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Seguimentos , Giro do Cíngulo/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sarcoma/patologia , Sarcoma Experimental/complicações , Sarcoma Experimental/diagnóstico por imagem , Transdução de Sinais/efeitos dos fármacos
15.
Ann Neurol ; 77(4): 618-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25611593

RESUMO

OBJECTIVE: Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the FMR1 gene. Interaction between estrogen receptor (ER) and lipid raft caveolae is critical for the estrogen signaling. Here, we tested the hypothesis that impaired ER-caveolae coupling contributes to the mental retardation of FXS. METHODS: Fmr1 knockout (KO) mouse was used as the model of FXS. Multiple techniques were performed including primary neuronal culture, short hairpin RNA (shRNA) interference, Western blot, electrophysiological recording, RNA-binding protein immunoprecipitation, reverse transcriptase polymerase chain reaction, and behavioral tests. RESULTS: In this study, we report that GluA1 surface expression and phosphorylation induced by 17ß-estradiol (E2) were impaired in the Fmr1 KO neurons. The E2-mediated facilitation of long-term potentiation and fear memory was impaired in the anterior cingulate cortex of Fmr1 KO mice. The increased coupling of caveolin-1 (CAV1) and the membrane estrogen receptor ERα under basal conditions contributed to the impairment of ER signaling in Fmr1 KO neurons. FMRP (fragile X mental retardation protein) interacted with CAV1 mRNA, and knockdown of CAV1 with shRNA rescued the synaptic GluA1 delivery, plasticity, and memory in Fmr1 KO mice. INTERPRETATION: This is the first demonstration that the coupling between ERα and lipid raft CAV1 is critical for membrane ER signaling in synaptic plasticity. Therefore, increased coupling of CAV1 and ERα may elucidate a critical abnormal mechanism of FXS.


Assuntos
Caveolina 1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Animais , Caveolina 1/genética , Receptor alfa de Estrogênio/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ligação Proteica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
16.
Transgenic Res ; 25(1): 33-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545599

RESUMO

Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.


Assuntos
Gossypium/genética , Plantas Geneticamente Modificadas/fisiologia , Tetranychidae/fisiologia , Zea mays/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas , Endotoxinas/genética , Fertilidade , Gossypium/fisiologia , Proteínas Hemolisinas/genética , Herbivoria/fisiologia , Proteínas de Insetos , Larva , Controle Biológico de Vetores , Folhas de Planta/genética , Folhas de Planta/metabolismo , Comportamento Predatório/fisiologia , Receptores de Superfície Celular/genética , Medição de Risco/métodos , Zea mays/fisiologia
17.
Mol Pain ; 11: 16, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25889665

RESUMO

The activation of Translocator protein (18 kDa) (TSPO) has been demonstrated to mediate rapid anxiolytic efficacy in stress response and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids that promote γ-aminobutyric acid (GABA)-mediated neurotransmission in the central neural system. However, little is known about the functions and the underlying mechanisms of TSPO in chronic pain-induced anxiety-like behaviors. The novel TSPO ligand N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was used in the present study. We found that ZBD-2 (0.15 or 1.5 mg/kg) significantly attenuated anxiety-like behaviors in mice with chronic inflammatory pain induced by hindpaw injection of complete Freund's adjuvant (CFA). However, the treatment did not alter the nociceptive threshold or inflammation in the hindpaw. Hindpaw injection of CFA induced the upregulation of TSPO, GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and NR2B-containing N-methyl-D-aspartate (NMDA) receptors in the basolateral amygdala (BLA). ZBD-2 administration reversed the alterations of the abovementioned proteins in the BLA of the CFA-injected mice. Electrophysiological recording revealed that ZBD-2 could prevent an imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected mice. Therefore, as the novel ligand of TSPO, ZBD-2 induced anxiolytic effects, but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of ZBD-2 were related to the regulation of the balance between excitatory and inhibitory transmissions in the BLA.


Assuntos
Acetamidas/metabolismo , Ansiolíticos/farmacologia , Dor Crônica/tratamento farmacológico , Purinonas/metabolismo , Receptores de GABA/metabolismo , Sinapses/metabolismo , Animais , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Adjuvante de Freund/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Transmissão Sináptica
18.
Mol Ecol ; 24(11): 2838-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847454

RESUMO

South-East Asia covers four of the world's biodiversity hotspots, showing high species diversity and endemism. Owing to the successive expansion and contraction of distribution and the fragmentation by geographical barriers, the tropical flora greatly diversified in this region during the Tertiary, but the evolutionary tempo and mode of species diversity remain poorly investigated. Paphiopedilum, the largest genus of slipper orchids comprising nearly 100 species, is mainly distributed in South-East Asia, providing an ideal system for exploring how plant species diversity was shaped in this region. Here, we investigated the evolutionary history of this genus with eight cpDNA regions and four low-copy nuclear genes. Discordance between gene trees and network analysis indicates that reticulate evolution occurred in the genus. Ancestral area reconstruction suggests that vicariance and long-distance dispersal together led to its current distribution. Diversification rate variation was detected and strongly correlated with the species diversity in subg. Paphiopedilum (~80 species). The shift of speciation rate in subg. Paphiopedilum was coincident with sea-level fluctuations in the late Cenozoic, which could have provided ecological opportunities for speciation and created bridges or barriers for gene flow. Moreover, some other factors (e.g. sympatric distribution, incomplete reproductive barriers and clonal propagation) might also be advantageous for the formation and reproduction of hybrid species. In conclusion, our study suggests that the interplay of reticulate evolution and sea-level fluctuations has promoted the diversification of the genus Paphiopedilum and sheds light into the evolution of Orchidaceae and the historical processes of plant species diversification in South-East Asia.


Assuntos
Especiação Genética , Orchidaceae/classificação , Sudeste Asiático , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Fluxo Gênico , Genes de Plantas , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Orchidaceae/genética , Análise de Sequência de DNA
19.
Clin Exp Pharmacol Physiol ; 42(10): 1068-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26174423

RESUMO

Ligands of the translocator protein (18 kDa) (TSPO) have demonstrated rapid anxiolytic efficacy in stress responses and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids including pregnenolone, dehydroepiandrosterone, and progesterone. These neurosteroids promote γ-aminobutyric acid-mediated neurotransmission in the central neural system (CNS). A TSPO ligand, N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was recently synthesized. The purpose of the present study was to investigate the neuroprotective effects of ZBD-2 and. In cultured cortical neurons, treatment with ZBD-2 attenuated excitotoxicity induced by N-methyl-d-aspartate (NMDA) exposure. It significantly decreased the number of apoptotic cells by downregulating GluN2B-containing NMDA receptors (NMDARs), the ratio of Bax/Bcl-2, and levels of pro-caspase-3. Systemic treatment of ZBD-2 provided significant neuroprotection in mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that neuroprotection by ZBD-2 is partially mediated by inhibiting GluN2B-containing NMDA receptor-mediated excitotoxicity.


Assuntos
Acetamidas/farmacologia , Isquemia Encefálica/prevenção & controle , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Purinonas/farmacologia , Receptores de GABA/metabolismo , Acetamidas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Masculino , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Purinonas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
PLoS Genet ; 8(12): e1003172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300470

RESUMO

Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.


Assuntos
Astrócitos , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Fatores de Crescimento Neural , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Dendritos/fisiologia , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA