Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Am Soc Nephrol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133556

RESUMO

BACKGROUND: Podocyte loss is the major driver of primary glomerular diseases such as Focal Segmental Glomerulosclerosis. While systemic glucocorticoids remain the initial and primary therapy for these diseases, high-dose and chronic use of glucocorticoids is riddled with systemic toxicities. Krüppel-Like Factor 15 (KLF15) is a glucocorticoid-responsive gene, which is essential for the restoration of mature podocyte differentiation markers and stabilization of actin cytoskeleton in the setting of cell stress. Induction of KLF15 attenuates podocyte injury and glomerulosclerosis in the setting of cell stress. METHODS: A cell-based high-throughput screen with a subsequent structure-activity relationship study was conducted to identify novel agonists of KLF15 in human podocytes. Next, the agonist was tested in cultured human podocytes under cell stress and in three independent proteinuric models (lipopolysaccharide, nephrotoxic serum nephritis, HIV-1 transgenic mice). A combination of RNA-sequencing and molecular modeling with experimental validation was conducted to demonstrate the direct target of the agonist. RESULTS: The high-throughput screen with structure-activity relationship study identified BT503, a urea-based compound, as a novel agonist of KLF15, independent of glucocorticoid signaling. BT503 demonstrated protective effects in cultured human podocytes and in three independent proteinuric murine models. Subsequent molecular modeling with experimental validation shows that BT503, targets the IKK complex by directly binding to IKKß to inhibit canonical NF-κB signaling, which, in turn, restores KLF15 under cell stress, thereby rescuing podocyte loss and ameliorating kidney injury. CONCLUSIONS: By developing and validating a cell-based high-throughput screen in human podocytes, we identified a novel agonist for KLF15 with salutary effects in proteinuric murine models through direct inhibition of IKKß kinase activity.

2.
Cell Commun Signal ; 22(1): 405, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160622

RESUMO

Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Animais
3.
Nutr J ; 23(1): 95, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160579

RESUMO

BACKGROUND: The occurrence and progression of asthma can be influenced by the components in food. Our study aims to determine whether dietary antioxidant and inflammatory potential are associated with the risk of mortality in asthma patients. METHODS: Participants from the 2001-2018 National Health and Nutrition Examination Survey (NHANES) aged 20 years and older with a diagnosis of asthma were included. Mortality status was obtained according to death certificate records from the National Death Index. The antioxidant and inflammatory potential of the diet was assessed using two widely used and dependable indices, Composite Dietary Antioxidant Index (CDAI) and Dietary Inflammatory Index (DII). Restricted cubic spline (RCS) regression was used to analyze the non-linear relationship between the two indexes and mortality. Multivariable Cox proportional risk models were used to estimate hazard ratio and 95% confidence intervals for mortality. Finally, the relationship between CDAI and DII was analyzed. RESULTS: A total of 4698 NHANES participants represented 23.2 million non-institutionalized residents of the US were enrolled in our study. Patients with higher CDAI or lower DII exhibited longer survival times. RCS regression showed a linear relationship of CDAI or DII with mortality. In the Cox regression, both crude and adjusted models demonstrated that higher CDAI or lower DII was linked to a reduced risk of all-cause mortality. Similar associations were found in subgroup analysis. Finally, a negative relationship was found between CDAI and DII. CONCLUSION: Reducing pro-inflammatory or increasing antioxidant diets could reduce all-cause mortality among adult asthma patients.


Assuntos
Antioxidantes , Asma , Dieta , Inflamação , Inquéritos Nutricionais , Humanos , Asma/mortalidade , Feminino , Masculino , Antioxidantes/administração & dosagem , Antioxidantes/análise , Pessoa de Meia-Idade , Adulto , Inquéritos Nutricionais/estatística & dados numéricos , Inquéritos Nutricionais/métodos , Dieta/métodos , Dieta/estatística & dados numéricos , Inflamação/mortalidade , Estados Unidos/epidemiologia , Modelos de Riscos Proporcionais , Idoso , Adulto Jovem , Fatores de Risco
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074766

RESUMO

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Assuntos
Injúria Renal Aguda/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Rim/lesões , Rim/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamação , Rim/patologia , Túbulos Renais Proximais/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Fatores de Transcrição/metabolismo
5.
Xenobiotica ; 53(6-7): 474-483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819730

RESUMO

The in vitro metabolism of hirsutine was determined using liver microsomes and human recombinant cytochrome P450 enzymes. Under the current conditions, a total of 14 phase I metabolites were tentatively identified.Ketoconazole showed significant inhibitory effect on the metabolism of hirsutine. Human recombinant cytochrome P450 enzyme analysis revealed that metabolism of hirsutine was mainly catalysed by CYP3A4.Our data revealed that hirsutine was metabolised via mono-oxygenation, di-oxygenation, N-oxygenation, dehydrogenation, demethylation and hydrolysis.In glutathione (GSH)-supplemented liver microsomes, four GSH adducts were identified. Hirsutine underwent facile P450-mediated metabolic activation, forming reactive 3-methyleneindolenine and iminoquinone intermediates.This study provided valuable information on the metabolic fates of hirsutine in liver microsomes, which would aid in understanding the hepatotoxicity caused by hirsutine or hirsutine-containing herb preparation.


Assuntos
Alcaloides , Antineoplásicos , Uncaria , Humanos , Alcaloides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Antineoplásicos/metabolismo , Microssomos Hepáticos/metabolismo
6.
Kidney Int ; 102(1): 58-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483525

RESUMO

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Assuntos
Fator 4 Semelhante a Kruppel , Microangiopatias Trombóticas , Animais , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Endotélio , Humanos , Glomérulos Renais/patologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Microangiopatias Trombóticas/patologia
7.
Aquac Nutr ; 2022: 8596427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860472

RESUMO

Niacin is indispensable for the growth and development of aquatic animals. However, the correlations between dietary niacin supplementations and the intermediary metabolism of crustaceans are still poorly elucidated. This study explored the effects of different dietary niacin levels on the growth, feed utilization, energy sensing, and glycolipid metabolism of oriental river prawn Macrobrachium nipponense. Prawns were fed with different experimental diets containing graded niacin levels (15.75, 37.62, 56.62, 97.78, 176.32, and 339.28 mg/kg, respectively) for 8 weeks. Weight gain, protein efficiency, feed intake, and hepatopancreas niacin contents all maximized in the 176.32 mg/kg group with significance noted with the control group (P <0.05), whereas the opposite was true for feed conversion ratio. Hepatopancreas niacin concentrations increased significantly (P < 0.05) as dietary niacin levels increased, and peaked at the 339.28 mg/kg group. Hemolymph glucose, total cholesterol, and triglyceride concentrations all maximized in the 37.62 mg/kg group, while total protein concentration reached the highest value in the 176.32 mg/kg group. The hepatopancreas mRNA expression of AMP-activated protein kinase α and sirtuin 1 peaked at the 97.78 and 56.62 mg/kg group, respectively, and then both decreased as dietary niacin levels increased furtherly (P < 0.05). Hepatopancreas transcriptions of the genes related to glucose transportation, glycolysis, glycogenesis, and lipogenesis all increased with increasing niacin levels up to 176.32 mg/kg, but decreased significantly (P < 0.05) as dietary niacin levels increased furtherly. However, the transcriptions of the genes related to gluconeogenesis and fatty acid ß-oxidation all decreased significantly (P < 0.05) as dietary niacin levels increased. Collectively, the optimum dietary niacin demand of oriental river prawn is 168.01-169.08 mg/kg. In addition, appropriate doses of niacin promoted the energy-sensing capability and glycolipid metabolism of this species.

8.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634362

RESUMO

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Assuntos
Injúria Renal Aguda , Ácidos Graxos/metabolismo , Fatores de Transcrição Kruppel-Like , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Rim , Túbulos Renais Proximais , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout
9.
Biochem Biophys Res Commun ; 551: 7-13, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33713981

RESUMO

Both the Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant pathway and Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway are considered essential for the development of acute lung injury (ALI)/ARDS induced by sepsis. Our aim was to study the role of Nrf2/HO-1 pathway on activation of the NLRP3 in the protective effect of marrow mesenchymal stem cells (BMSCs) on LPS-induced ALI. We found that BMSCs ameliorated ALI as evidenced by 1) decreased histopathological injury, wet/dry ratio, and protein permeability index in lung; 2) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl content and restored the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in lung tissue; 3) reduced LPS-induced increase in inflammatory cell count and promotion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels in bronchoalveolar lavage fluid (BALF); 4) improvement in the four-day survival rate of animals; and 5) enhanced expression of Nrf2 and HO-1 and decreased expression of NOD-like receptor protein 3(NLRP3) and caspase-1 (p20) in lung tissue. Of note, Nrf2 transcription factor inhibitor brusatol and HO-1 inhibitor tin protoporphyrin IX (SnppIX) reversed BMSCs induced down-expression of NLRP3 and caspase-1 (p20), and inhibited the protective effects of BMSCs. These findings demonstrated that the Nrf2-mediated HO-1 signaling pathway plays a critical role in the protective effects of BMSCs on LPS-induced ALI. BMSCs may play an anti-inflammatory effect partly through the Nrf2/HO-1-dependent NLRP3 pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Células da Medula Óssea/citologia , Endotoxinas/efeitos adversos , Heme Oxigenase (Desciclizante)/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Antioxidantes/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Taxa de Sobrevida
10.
J Oral Pathol Med ; 49(5): 417-426, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31823403

RESUMO

BACKGROUND: Despite their high accuracy to recognize oral potentially malignant disorders (OPMDs) with cancer risk, non-invasive oral assays are poor in discerning whether the risk is high or low. However, it is critical to identify the risk levels, since high-risk patients need active intervention, while low-risk ones simply need to be follow-up. This study aimed at developing a personalized computational model to predict cancer risk level of OPMDs and explore its potential web application in OPMDs screening. METHODS: Each enrolled patient was subjected to the following procedure: personal information collection, non-invasive oral examination, oral tissue biopsy and histopathological analysis, treatment, and follow-up. Patients were randomly divided into a training set (N = 159) and a test set (N = 107). Random forest was used to establish classification models. A baseline model (model-B) and a personalized model (model-P) were created. The former used the non-invasive scores only, while the latter was incremented with appropriate personal features. RESULTS: We compared the respective performance of cancer risk level prediction by model-B, model-P, and clinical experts. Our data suggested that all three have a similar level of specificity around 90%. In contrast, the sensitivity of model-P is beyond 80% and superior to the other two. The improvement of sensitivity by model-P reduced the misclassification of high-risk patients as low-risk ones. We deployed model-P in web.opmd-risk.com, which can be freely and conveniently accessed. CONCLUSION: We have proposed a novel machine-learning model for precise and cost-effective OPMDs screening, which integrates clinical examinations, machine learning, and information technology.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Neoplasias Bucais/diagnóstico , Lesões Pré-Cancerosas/diagnóstico , Medição de Risco/métodos , Detecção Precoce de Câncer , Humanos , Internet , Software
11.
Clin Lab ; 65(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30868851

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been predicted to play a critical role in various biological processes including tumorigenesis. However, the clinical significance of UCA1 in lung adenocarcinoma (LUAD) is still not understood in detail. The aim of this study was to assess the clinical significance of the UCA1 expression levels in LUAD based on publicly available data and to evaluate its potential signaling pathways. METHODS: The RNA-sequencing (RNA-seq) dataset and clinical information of all LUAD patients were downloaded from The Cancer Genome Atlas (TCGA). Kaplan-Meier plot and log-rank test were performed for survival analysis; Cox proportional hazards regression model were used to assess the relative factors. Furthermore, Starbase, Cbioportal, and Multi Experiment Matrix starbases were used to identify UCA1-related genes in LUAD. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of UCA1-related genes were performed using DAVID. RESULTS: The expression level of UCA1 in LUAD tissues (n = 468) was significantly increased compared with the adjacent non-tumor lung tissues (n = 52) (p < 0.0001). In addition, UCA1 level was significantly correlated with TNM stage and lymph node metastasis. Survival analysis showed that UCA1 over-expression was significantly associated with poor overall survival (OS) (p = 0.0098) and poor recurrence-free survival (RFS) (p = 0.0298) in LUAD patients. Multivariate analysis confirmed that high expression of lncRNA-UCA1 was an independent prognostic factor of poor OS (HR = 1.353, 95% CI: 1.005 - 1.822, p = 0.046). Finally, KEGG analysis for UCA1-related genes indicated that UCA1 might be enriched with the microRNAs in cancer, pathways in cancer, endocytosis, focal adhesion, and proteoglycans in cancer. CONCLUSIONS: This study showed that UCA1 may be involved in lung carcinogenesis, which could act as a biomarker of prognosis and therapeutic target in LUAD patients.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , China/epidemiologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade
12.
J Am Soc Nephrol ; 29(10): 2529-2545, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143559

RESUMO

BACKGROUND: Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS: We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS: In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS: Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Nefropatias/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Fatores de Transcrição/biossíntese , Citoesqueleto de Actina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Adesões Focais , Técnicas de Silenciamento de Genes , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Nefropatias/genética , Nefropatias/patologia , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Nefrose Lipoide/genética , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Fatores de Transcrição/genética , Regulação para Cima , Proteínas WT1/antagonistas & inibidores , Proteínas WT1/genética , Proteínas WT1/metabolismo
13.
J Am Soc Nephrol ; 28(1): 166-184, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27288011

RESUMO

Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/fisiologia , Glucocorticoides/farmacologia , Podócitos/citologia , Podócitos/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Adolescente , Adulto , Animais , Antígenos de Diferenciação/efeitos dos fármacos , Criança , Dexametasona/farmacologia , Feminino , Glomerulosclerose Segmentar e Focal/imunologia , Humanos , Fatores de Transcrição Kruppel-Like , Masculino , Camundongos , Pessoa de Meia-Idade , Nefrose Lipoide/imunologia , Adulto Jovem
14.
Kidney Int ; 92(5): 1178-1193, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28651950

RESUMO

Large epidemiological studies clearly demonstrate that multiple episodes of acute kidney injury contribute to the development and progression of kidney fibrosis. Although our understanding of kidney fibrosis has improved in the past two decades, we have limited therapeutic strategies to halt its progression. Myofibroblast differentiation and proliferation remain critical to the progression of kidney fibrosis. Although canonical Wnt signaling can trigger the activation of myofibroblasts in the kidney, mediators of Wnt inhibition in the resident progenitor cells are unclear. Recent studies demonstrate that the loss of a Krüppel-like factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, exacerbates kidney fibrosis in murine models. Here, we tested whether Klf15 mRNA and protein expression are reduced in late stages of fibrosis in mice that underwent unilateral ureteric obstruction, a model of progressive renal fibrosis. Knockdown of Klf15 in Foxd1-expressing cells (Foxd1-Cre Klf15fl/fl) increased extracellular matrix deposition and myofibroblast proliferation as compared to wildtype (Foxd1-Cre Klf15+/+) mice after three and seven days of ureteral obstruction. This was validated in mice receiving angiotensin II treatment for six weeks. In both these murine models, the increase in renal fibrosis was found in Foxd1-Cre Klf15fl/fl mice and accompanied by the activation of Wnt/ß-catenin signaling. Furthermore, knockdown of Klf15 in cultured mouse embryonic fibroblasts activated canonical Wnt/ß-catenin signaling, increased profibrotic transcripts, and increased proliferation after treatment with a Wnt1 ligand. Conversely, the overexpression of KLF15 inhibited phospho-ß-catenin (Ser552) expression in Wnt1-treated cells. Thus, KLF15 has a critical role in attenuating kidney fibrosis by inhibiting the canonical Wnt/ß-catenin pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Nefropatias/patologia , Rim/patologia , Miofibroblastos/patologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Angiotensina II/toxicidade , Animais , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Rim/citologia , Nefropatias/etiologia , Fatores de Transcrição Kruppel-Like , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Fatores de Transcrição/genética , Proteína Wnt1/metabolismo , beta Catenina/metabolismo
15.
Am J Nephrol ; 46(1): 55-63, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28618409

RESUMO

BACKGROUND: Few genetic studies have focused on unilateral renal agenesis (URA), which is a disorder with insidious clinical manifestations and a tendency to result in renal failure. We aimed to detect pathogenic mutations in nephrogenesis-related genes, which were identified by a literature review conducted among a large cohort of Chinese Han patients with URA. METHODS: Totally, 86 unrelated URA patients were included. All URA patients were diagnosed by employing radiological methods. Patients with a solitary kidney owing to nephrectomy or renal atrophy due to secondary factors were excluded. Nine (10.5%) patients had a family history of abnormal nephrogenesis. Fifteen (17.4%) had other malformations in the urogenital system. All coding exons and adjacent intron regions of 25 genes were analyzed using next-generation sequencing and validated by Sanger sequencing and 100 ethnically matched healthy controls. RESULTS: Ten conserved mutations (9 missense mutations and 1 deletion mutation) were identified in SALL1, EYA1, RET, HNF1B, DSTYK, WNT4, and SIX5. All mutations were novel or rare (frequency <0.1%) in the public databases and absent from the 100 healthy controls. Nine patients carried mutations in candidate genes. Most of the patients carried one single heterozygous mutation, except for 2, who respectively carried compound heterozygous mutations and 2 single heterozygous mutations. In addition, 2 patients shared the same mutation in DSTYK. CONCLUSION: A total of 10.5% of our URA cases could be explained by mutations in our candidate genes. The mutations in nephrogenesis-related genes in the Chinese Han patients with URA had a decentralized distribution without any hotspot mutations.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença , Rim/embriologia , Rim Único/genética , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Éxons/genética , Feminino , Fator 1-beta Nuclear de Hepatócito/genética , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fenótipo , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Deleção de Sequência , Fatores de Transcrição/genética , Proteína Wnt4/genética , Adulto Jovem
17.
PLoS Genet ; 9(10): e1003850, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098152

RESUMO

A subset of transcription factors like Gli2 and Oct1 are bipotential--they can activate or repress the same target, in response to changing signals from upstream genes. Some previous studies implied that the sex-determination protein TRA-1 might also be bipotential; here we confirm this hypothesis by identifying a co-factor, and use it to explore how the structure of a bipotential switch changes during evolution. First, null mutants reveal that C. briggsae TRR-1 is required for spermatogenesis, RNA interference implies that it works as part of the Tip60 Histone Acetyl Transferase complex, and RT-PCR data show that it promotes the expression of Cbr-fog-3, a gene needed for spermatogenesis. Second, epistasis tests reveal that TRR-1 works through TRA-1, both to activate Cbr-fog-3 and to control the sperm/oocyte decision. Since previous studies showed that TRA-1 can repress fog-3 as well, these observations demonstrate that it is bipotential. Third, TRR-1 also regulates the development of the male tail. Since Cbr-tra-2 Cbr-trr-1 double mutants resemble Cbr-tra-1 null mutants, these two regulatory branches control all tra-1 activity. Fourth, striking differences in the relationship between these two branches of the switch have arisen during recent evolution. C. briggsae trr-1 null mutants prevent hermaphrodite spermatogenesis, but not Cbr-fem null mutants, which disrupt the other half of the switch. On the other hand, C. elegans fem null mutants prevent spermatogenesis, but not Cel-trr-1 mutants. However, synthetic interactions confirm that both halves of the switch exist in each species. Thus, the relationship between the two halves of a bipotential switch can shift rapidly during evolution, so that the same phenotype is produce by alternative, complementary mechanisms.


Assuntos
Evolução Biológica , Transtornos do Desenvolvimento Sexual/genética , Oócitos/crescimento & desenvolvimento , Processos de Determinação Sexual/genética , Espermatozoides/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Humanos , Masculino , Oogênese/genética , Processos de Determinação Sexual/fisiologia , Espermatogênese/genética
18.
Ther Clin Risk Manag ; 20: 413-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045135

RESUMO

Background: The positive roles of deep muscle relaxation in abdominal surgeries and transversus abdominis plane block (TAPB) in the postoperative analgesia. This study aimed to discuss the effects of TAPB on abdominal muscle relaxation, the intraoperative diaphragmatic, and the respiratory functions. Methods: The patients were randomly divided into the TAPB group who received single-shot TAPB bilaterally (n=30), and the control group who did not receive TAPB (n=30). Both groups keep the same steps for other procedures in the surgeries and anesthesia. Four time points for monitoring were defined: The moment when pneumoperitoneum pressure stabilized following endotracheal intubation and anesthetic induction (T0), appearance of the first incisure in the pressure-volume (P-V) loop (T1), appearance of the second incisure in the P-V loop (T2), and the moment with single stimulation (SS) =20% (T3). Primary observation parameters were SS1 measured by muscle relaxation monitoring at T1, and SS2 at T2. Secondary observation parameters included surgeon's satisfaction with surgical field and respiratory dynamics at the four time points. Results: The two groups were comparable in age, gender, BMI, ASA grade, and operation time. The TAPB group had a dramatic reduction in the total dose of intraoperative sufentanil (0.73±0.21 ug/kg) compared with the control group (0.87±0.18 ug/kg) (P=0.023); Other use of drug did not differ between the two groups. The two groups did not differ significantly in SS at either T1 (SS1) or T2 (SS2). In either group, surgeon's satisfaction with surgical field at T1 and T2 decreased dramatically compared with T0 and T3 (all P<0.05). At each time point, the respiratory dynamics and the surgeon's satisfaction with surgical field did not differ significantly between the two groups. Conclusion: TAPB reduced the use of intraoperative analgesics without altering the degree of abdominal relaxation, or affecting surgeon's satisfaction with surgical field in the patients receiving laparoscopic colorectal surgery.

19.
Comput Biol Med ; 170: 107896, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217972

RESUMO

BACKGROUND: Abnormal expression of collagen IV subunits has been reported in cancers, but the significance is not clear. No study has reported the significance of COL4A4 in lung adenocarcinoma (LUAD). METHODS: COL4A4 expression data, single-cell sequencing data and clinical data were downloaded from public databases. A range of bioinformatics and experimental methods were adopted to analyze the association of COL4A4 expression with clinical parameters, tumor microenvironment (TME), drug resistance and immunotherapy response, and to investigate the roles and underlying mechanism of COL4A4 in LUAD. RESULTS: COL4A4 is differentially expressed in most of cancers analyzed, being associated with prognosis, tumor stemness, immune checkpoint gene expression and TME parameters. In LUAD, COL4A4 expression is down-regulated and associated with various TME parameters, response to immunotherapy and drug resistance. LUAD patients with lower COL4A4 have worse prognosis. Knockdown of COL4A4 significantly inhibited the expression of cell-cycle associated genes, and the expression and activation of signaling pathways including JAK/STAT3, p38, and ERK pathways, and induced quiescence in LUAD cells. Besides, it significantly induced the expression of a range of bioactive molecule genes that have been shown to have critical roles in TME remodeling and immune regulation. CONCLUSIONS: COL4A4 is implicated in the pathogenesis of cancers including LUAD. Its function may be multifaceted. It can modulate the activity of LUAD cells, TME remodeling and tumor stemness, thus affecting the pathological process of LUAD. COL4A4 may be a prognostic molecular marker and a potential therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Biologia Computacional , Bases de Dados Factuais , Imunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Colágeno Tipo IV/genética
20.
Biosensors (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920580

RESUMO

Metal-organic frameworks (MOFs) are frequently utilized as sensing materials. Unfortunately, the low conductivity of MOFs hinder their further application in electrochemical determination. To overcome this limitation, a novel modification strategy for MOFs was proposed, establishing an electrochemical determination method for cyanides in Baijiu. Co and Ni were synergistically used as the metal active centers, with meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Ferrocenecarboxylic acid (Fc-COOH) serving as the main ligands, synthesizing Ni/Co-MOF-TCPP-Fc through a hydrothermal method. The prepared MOF exhibited improved conductivity and stable ratio signals, enabling rapid and sensitive determination of cyanides. The screen-printed carbon electrodes (SPCE) were suitable for in situ and real-time determination of cyanide by electrochemical sensors due to their portability, low cost, and ease of mass production. A logarithmic linear response in the range of 0.196~44 ng/mL was demonstrated by this method, and the limit of detection (LOD) was 0.052 ng/mL. Compared with other methods, the sensor was constructed by a one-step synthesis method, which greatly simplifies the analysis process, and the determination time required was only 4 min. During natural cyanide determinations, recommended readouts match well with GC-MS with less than 5.9% relative error. Moreover, this electrochemical sensor presented a promising method for assessing the safety of cyanides in Baijiu.


Assuntos
Cianetos , Técnicas Eletroquímicas , Limite de Detecção , Estruturas Metalorgânicas , Cianetos/análise , Estruturas Metalorgânicas/química , Eletrodos , Técnicas Biossensoriais , Níquel/química , Compostos Ferrosos/química , Metalocenos/química , Cobalto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA