Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847472

RESUMO

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioma , Aprendizado de Máquina , Nomogramas , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Morte Celular/genética , Masculino , Feminino , Curva ROC , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
2.
Cancer Cell Int ; 21(1): 383, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281539

RESUMO

Methyltransferase-like 7B (METTL7B) is a member of the methyltransferase-like protein family that plays an important role in the development and progression of tumors. However, its prognostic value and the correlation of METTL7B expression and tumor immunity in some cancers remain unclear. By analyzing online data, we found that METTL7B is abnormally overexpressed in multiple human tumors and plays an important role in the overall survival (OS) of patients with 8 cancer types and disease-free survival (DFS) of patients with 5 cancer types. Remarkably, METTL7B expression was positively correlated with the OS and DFS of patients with lower-grade glioma (LGG). In addition, a positive correlation between METTL7B expression and immune cell infiltration in LGG was observed. Moreover, we identified a strong correlation between METTL7B expression and immune checkpoint gene expression in kidney chromophobe (KICH), LGG and pheochromocytoma and paraganglioma (PCPG). Furthermore, METTL7B was involved in the extracellular matrix (ECM) and immune-related pathways in LGGs. Finally, in vitro experiments showed that knockdown of METTL7B inhibited the growth, migration, invasion and the epithelial-mesenchymal transition (EMT) of LGG cells. METTL7B expression potentially represents a novel prognostic biomarker due to its significant association with immune cell infiltration in LGG.

3.
Sensors (Basel) ; 21(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960346

RESUMO

A feature-based automatic modulation classification (FB-AMC) algorithm has been widely investigated because of its better performance and lower complexity. In this study, a deep learning model was designed to analyze the classification performance of FB-AMC among the most commonly used features, including higher-order cumulants (HOC), features-based fuzzy c-means clustering (FCM), grid-like constellation diagram (GCD), cumulative distribution function (CDF), and raw IQ data. A novel end-to-end modulation classifier based on deep learning, named CCT classifier, which can automatically identify unknown modulation schemes from extracted features using a general architecture, was proposed. Features except GCD are first converted into two-dimensional representations. Then, each feature is fed into the CCT classifier for modulation classification. In addition, Gaussian channel, phase offset, frequency offset, non-Gaussian channel, and flat-fading channel are also introduced to compare the performance of different features. Additionally, transfer learning is introduced to reduce training time. Experimental results showed that the features HOC, raw IQ data, and GCD obtained better classification performance than CDF and FCM under Gaussian channel, while CDF and FCM were less sensitive to the given phase offset and frequency offset. Moreover, CDF was an effective feature for AMC under non-Gaussian and flat-fading channels, and the raw IQ data can be applied to different channels' conditions. Finally, it showed that compared with the existing CNN and K-S classifiers, the proposed CCT classifier significantly improved the classification performance for MQAM at N = 512, reaching about 3.2% and 2.1% under Gaussian channel, respectively.


Assuntos
Algoritmos , Redes Neurais de Computação
4.
Heliyon ; 10(7): e28445, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560169

RESUMO

Purpose: TNF family members (TFMs) play a crucial role in different types of cancers, with TNF Receptor Superfamily Member 19 (TNFRSF19) standing out as a particularly important member in this category. Further research is necessary to investigate the potential impact of TFMs on prognosis prediction and to elucidate the function and potential therapeutic targets linked to TNFRSF19 expression in gliomas. Methods: Three databases provided the data on gene expression and clinical information. Fourteen prognostic members were found through univariate Cox analysis and subsequently utilized to construct TFMs-based model in LASSO and multivariate Cox analyses. TFMs-based subtypes based on the expression profile were identified using an unsupervised clustering method. Machine learning algorithm identified key genes linked to prognostic model and subtype. A sequence of immune infiltrations was evaluated using the ssGSEA and ESTIMATE algorithms. Immunohistochemistry was used to examine the patterns of expression and the clinical significance of TNFRSF19. Results: Our development of a prognostic model and subtypes based on the TNF family was successful, resulting in accurate predictions of prognosis. The findings indicate that TNFRSF19 exhibited strong performance. Upregulation of TNFRSF19 was correlated with malignant phenotypes and poor prognosis, which was confirmed through immunohistochemistry. TNFRSF19 played a role in reshaping the immunosuppressive microenvironment in gliomas, and multiple drug-targeted TNFRSF19 molecules were identified. Conclusions: The TMF-based prognostic model and subtype can facilitate treatment decisions for glioma. TNFRSF19 is an outstanding representative of a predictor of prognosis and immunotherapy effect in gliomas.

5.
Mol Neurobiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519735

RESUMO

Spinal cord injury (SCI) is a serious disease without effective therapeutic strategies. To identify the potential treatments for SCI, it is extremely important to explore the underlying mechanism. Current studies demonstrate that anoikis might play an important role in SCI. In this study, we aimed to identify the key anoikis-related genes (ARGs) providing therapeutic targets for SCI. The mRNA expression matrix of GSE45006 was downloaded from the Gene Expression Omnibus (GEO) database, and the ARGs were downloaded from the Molecular Signatures Database (MSigDB database). Then, the potential differentially expressed ARGs were identified. Next, correlation analysis, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) analysis were employed for the differentially expressed ARGs. Moreover, miRNA-gene networks were constructed by the hub ARGs. Finally, RNA expression of the top ten hub ARGs was validated in the SCI cell model and rat SCI model. A total of 27 common differentially expressed ARGs were identified at different time points (1, 3, 7, and 14 days) following SCI. The GO and KEGG enrichment analysis of these ARGs indicated several enriched terms related to proliferation, cell cycle, and apoptotic process. The PPI results revealed that most of the ARGs interacted with each other. Ten hub ARGs were further screened, and all the 10 genes were validated in the SCI cell model. In the rat model, only seven genes were validated eventually. We identified 27 differentially expressed ARGs of the SCI through bioinformatic analysis. Seven real hub ARGs (CCND1, FN1, IGF1, MYC, STAT3, TGFB1, and TP53) were identified eventually. These results may expand our understanding of SCI and contribute to the exploration of potential SCI targets.

6.
Int J Biol Macromol ; 262(Pt 2): 130032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342267

RESUMO

In recent years, remarkable strides have been made in the field of immunotherapy, which has emerged as a standard treatment for many cancers. As a kind of immunotherapy drug, monoclonal antibodies employed in immune checkpoint therapy have proven beneficial for patients with diverse cancer types. However, owing to the extensive heterogeneity of clinical responses and the complexity and variability of the immune system and tumor microenvironment (TME), accurately predicting its efficacy remains a challenge. Recent advances in aptamers provide a promising approach for monitoring alterations within the immune system and TME, thereby facilitating targeted immunotherapy, particularly focused on immune checkpoint blockade, with enhanced antitumor efficiency. Aptamers have been widely used in tumor cell detection, biosensors, drug discovery, and biomarker screening due to their high specificity and high affinity with their targets. This review aims to comprehensively examine the research status and progress of aptamers in cancer diagnosis and immunotherapy, with a specific emphasis on those related to immune checkpoints. Additionally, we will discuss the future research directions and potential therapeutic targets for aptamer-based immune checkpoint therapy, aiming to provide a theoretical basis for targeting immunotherapy molecules and blocking tumor immune escape.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Oligonucleotídeos , Microambiente Tumoral
7.
Heliyon ; 10(5): e26976, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463788

RESUMO

Background: Glioma, a highly resistant and recurrent type of central nervous system tumor, poses a significant challenge in terms of effective drug treatments and its associated mortality rates. Despite the discovery of Ferredoxin 1 (FDX1) as a crucial participant in cuproptosis, an innovative mechanism of cellular demise, its precise implications for glioma prognosis and tumor immune infiltration remain inadequately elucidated. Methods: To analyze pan-cancer data, we employed multiple public databases. Gene expression evaluation was performed using tissue microarray (TMA) and single-cell sequencing data. Furthermore, four different approaches were employed to assess the prognostic importance of FDX1 in glioma. We conducted the analysis of differential expression genes (DEGs) and Gene Set Enrichment Analysis (GSEA) to identify immune-related predictive signaling pathways. Somatic mutations were assessed using Tumor Mutation Burden (TMB) and waterfall plots. Immune cell infiltration was evaluated with five different algorithms. Furthermore, we performed in vitro investigations to evaluate the biological roles of FDX1 in glioma. Results: Glioma samples exhibited upregulation of FDX1, which in turn predicted poor prognosis and was positively associated with unfavorable clinicopathological characteristics. Notably, the top four enriched signaling pathways were immune-related, and the discovery revealed a connection between the expression of FDX1 and the frequency of mutations or the TMB. The FDX1_high group exhibited heightened infiltration of immune cells, and there existed a direct association between the expression of FDX1 and the regulation of immune checkpoint. In vitro experiments demonstrated that FDX1 knockdown reduced proliferation, migration, invasion and transition from G2 to M phase in glioma cells. Conclusion: In glioma, FDX1 demonstrated a positive association with the advancement of malignancy and changes in the infiltration of immune cells.

8.
Bioact Mater ; 35: 242-258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38333615

RESUMO

Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.

9.
Front Immunol ; 14: 1138203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215097

RESUMO

Background: Glioma, the most prevalent malignant intracranial tumor, poses a significant threat to patients due to its high morbidity and mortality rates, but its prognostic indicators remain inaccurate. Although TRAF-associated NF-kB activator (TANK) interacts and cross-regulates with cytokines and microenvironmental immune cells, it is unclear whether TANK plays a role in the immunologically heterogeneous gliomas. Methods: TANK mRNA expression patterns in public databases were analyzed, and qPCR and IHC were performed in an in-house cohort to confirm the clinical significance of TANK. Then, we systematically evaluated the relationship between TANK expression and immune characteristics in the glioma microenvironment. Additionally, we evaluated the ability of TANK to predict treatment response in glioma. TANK-associated risk scores were developed by LASSO-Cox regression and machine learning, and their prognostic ability was tested. Results: TANK was specifically overexpressed in glioma and enriched in the malignant phenotype, and its overexpression was related to poor prognosis. The presence of a tumor microenvironment that is immunosuppressive was evident by the negative correlations between TANK expression and immunomodulators, steps in the cancer immunity cycle, and immune checkpoints. Notably, treatment for cancer may be more effective when immunotherapy is combined with anti-TANK therapy. Prognosis could be accurately predicted by the TANK-related risk score. Conclusions: High expression of TANK is associated with the malignant phenotype of glioma, as it shapes an immunosuppressive tumor microenvironment. Additionally, TANK can be used as a predictive biomarker for responses to various treatments and prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adjuvantes Imunológicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Imunossupressores , Prognóstico , Microambiente Tumoral
10.
J Otolaryngol Head Neck Surg ; 52(1): 79, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087297

RESUMO

OBJECTIVE: Our research group in the early stage identified CD109 as the target of aptamer S3 in nasopharyngeal carcinoma (NPC). This study was to use S3 to connect DNA tetrahedron (DT) and load doxorubicin (Dox) onto DT to develop a targeted delivery system, and explore whether S3-DT-Dox can achieve targeted therapy for NPC. METHODS: Aptamer S3-conjugated DT was synthesized and loaded with Dox. The effects of S3-DT-Dox on NPC cells were investigated with laser confocal microscopy, flow cytometry, and MTS assays. A nude mouse tumor model was established from NPC 5-8F cells, and the in vivo anti-tumor activity of S3-DT-Dox was examined by using fluorescent probe labeling and hematoxylin-eosin staining. RESULTS: The synthesized S3-DT had high purity and stability. S3-DT specifically recognized 5-8F cells and NPC tissues in vitro. When the ratio of S3-DT to Dox was 1:20, S3-DT had the best Dox loading efficiency. The drug release rate reached the maximum (0.402 ± 0.029) at 48 h after S3-DT-Dox was prepared and mixed with PBS. S3-DT did not affect Dox toxicity to 5-8F cells, but reduced Dox toxicity to non-target cells. Meanwhile, S3-DT-Dox was able to specifically target the transplanted tumors and inhibit their growth in nude mice, with minor damage to normal tissues. CONCLUSION: Our study highlights the ability and safety of S3-DT-Dox to target NPC cells and inhibit the development NPC.


Assuntos
Doxorrubicina , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/tratamento farmacológico , Camundongos Nus , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , DNA , Neoplasias Nasofaríngeas/tratamento farmacológico
11.
Front Immunol ; 14: 1291385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022537

RESUMO

Backgrounds: Disulfidptosis, a newly discovered mechanism of programmed cell death, is believed to have a unique role in elucidating cancer progression and guiding cancer therapy strategies. However, no studies have yet explored this mechanism in glioma. Methods: We downloaded data on glioma patients from online databases to address this gap. Subsequently, we identified disulfidptosis-related genes from published literature and verified the associated lncRNAs. Results: Through univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) regression algorithms analyses, we identified 10 lncRNAs. These were then utilized to construct prognostic prediction models, culminating in a risk-scoring signature. Reliability and validity tests demonstrated that the model effectively discerns glioma patients' prognosis outcomes. We also analyzed the relationship between the risk score and immune characteristics, and identified several drugs that may be effective for high-risk patients. In vitro experiments revealed that LINC02525 could enhances glioma cells' migration and invasion capacities. Additionally, knocking down LINC02525 was observed to promote glioma cell disulfidptosis. Conclusion: This study delves into disulfidptosis-related lncRNAs in glioma, offering novel insights into glioma therapeutic strategies.


Assuntos
Glioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Prognóstico , Glioma/genética , Algoritmos
12.
Front Surg ; 9: 919276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937594

RESUMO

Background: Frontal sinus exposure is a common consequence of frontal craniotomy. Cerebrospinal fluid leakage and infection are the major postoperative complications that may occur as a result of the open frontal sinus. The successful filling of the open frontal sinus provides an approach to prevent significant complications caused by frontal sinus exposure. Objective: This article describes a new technique to reconstruct the exposed frontal sinus cavity with the combined application of gelatin sponge and a vascularized pericranial flap. Methods: A total of 140 patients underwent frontal sinus reconstruction using gelfoam and vascularized pericranial flaps from 2016 to 2021. Gelatin sponge was used to fill the frontal sinus, and a vascularized pericranial flap was used to cover the frontal sinus when the bone flap was retracted. Results: Postoperative cerebrospinal fluid leakage and infection did not occur in any patient. Conclusion: Our results validated the effectiveness of our technique in the prevention of exposed frontal sinus-related postoperative complications.

13.
Front Oncol ; 12: 1013419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408161

RESUMO

Background: Rosai-Dorfman disease (RDD) is a rare benign non-Langerhans cell histiocytic proliferative disease. RDD with central nervous system (CNS) involvement (CNS-RDD) is extremely rare. Its etiology is unclear, and there are no consensus recommendations for its treatment. More studies are needed to elucidate the clinical and radiological manifestations and prognosis of CNS-RDD. Methods: From January 2012 to June 2022, 12 patients with CNS-RDD (intracranial or spinal) were retrospectively evaluated, including collecting clinical data, imaging data, and pathological findings; summarizing imaging characteristics; and conducting follow-up studies on CND-RDD patient treatment and prognosis. Results: Twelve CNS-RDD patients (nine male and three female patients, aged 12-67 years) were enrolled in this study. Nine patients represented convex and/or skull base RDD (eight with edema, six with lobulation and/or pseudopodium sign, four with multiple intracranial lesions), two patients had parenchymal RDD, and one patient had spinal cord subdural lesions. Symptoms of patients would vary according to the locations of the lesion, including but not limited to headaches, dizziness, seizures, cranial nerve dysfunction, and visual impairment. The immunohistochemistry of RDD showed positive expression of S100 and CD68 but not CD1a. Total resection (n = 7), subtotal resection (n = 3), partial resection (n = 1), and stereotaxic biopsy (n = 1) were achieved, respectively. A combination of chemotherapy plus steroid therapy was performed on two patients (relapsing case and residual lesion) and showed a remarkable effect. Conclusion: CNS-RDD, as a rare disease, presents a significant diagnostic challenge for clinicians. Solitary CNS-RDD are easily misdiagnosed as meningioma. However, when the MRI imaging of the disease represents dura-based masses with significant edema, homogeneous enhancement, lobulation, and/or pseudopodium sign, we should consider it might be the CNS-RDD. Surgery is an important and effective therapy for CNS-RDD. Steroids and chemotherapy are safe and effective for the postoperative treatment of relapsing cases or residual lesions.

14.
Front Genet ; 12: 616507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732284

RESUMO

Glioma is the common histological subtype of malignancy in the central nervous system, with high morbidity and mortality. Glioma cancer stem cells (CSCs) play essential roles in tumor recurrence and treatment resistance. Thus, exploring the stem cell-related genes and subtypes in glioma is important. In this study, we collected the RNA-sequencing (RNA-seq) data and clinical information of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. With the differentially expressed genes (DEGs) and weighted gene correlation network analysis (WGCNA), we identified 86 mRNA expression-based stemness index (mRNAsi)-related genes in 583 samples from TCGA RNA-seq dataset. Furthermore, these samples from TCGA database could be divided into two significantly different subtypes with different prognoses based on the mRNAsi corresponding gene, which could also be validated in the CGGA database. The clinical characteristics and immune cell infiltrate distribution of the two stemness subtypes are different. Then, functional enrichment analyses were performed to identify the different gene ontology (GO) terms and pathways in the two different subtypes. Moreover, we constructed a stemness subtype-related risk score model and nomogram to predict the prognosis of glioma patients. Finally, we selected one gene (ETV2) from the risk score model for experimental validation. The results showed that ETV2 can contribute to the invasion, migration, and epithelial-mesenchymal transition (EMT) process of glioma. In conclusion, we identified two distinct molecular subtypes and potential therapeutic targets of glioma, which could provide new insights for the development of precision diagnosis and prognostic prediction for glioma patients.

15.
Theranostics ; 11(20): 9775-9790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815785

RESUMO

Rationale: Diffuse glioma patients have high mortality and recurrence despite multimodal therapies. This study aims to identify the potential tumor antigens for mRNA vaccines and subtypes suitable for the immunotherapy of patients with diffuse glioma. Methods: Gene expression profiles and corresponding clinical information were obtained from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) databases. Genetic alterations were extracted from cBioPortal. Differential gene analysis, survival analysis, correlation analysis, consensus clustering analysis, and immune cell infiltration analysis were conducted based on the various databases. Finally, the hub genes, the modules related to tumor antigens, and the immune subtypes were identified using WGCNA method. Results: Three over-expressed, amplified, and mutated tumor antigens, including KDR, COL1A2, and SAMD9, were associated with clinical outcomes. The expression of the three genes had a positive correlation with the abundance of antigen-presenting cells (APCs) and APC marker expression. Subsequently, three immune subtypes (Ims1, Ims2, and Ims3) were distinguished in the TCGA cohort, which exhibited distinct molecular, cellular, and clinical characteristics consistent with the CGGA cohort. Diffuse gliomas with subtype Ims1 were more malignant with immunosuppressive phenotypes and more associated with poor prognosis than the other two subtypes. The three antigens and the immune checkpoints were differentially expressed among the three immune subtypes. Finally, functional enrichment analysis of the genes related to tumor antigens and immune subtypes suggested that they are enriched in many immune-associated processes. Conclusions: KDR, COL1A2, and SAMD9 are potential antigens for developing mRNA vaccines against diffuse glioma. The results suggest that immunotherapy targeting these three antigens is more suitable for patients with subtype Ims1. This study provides insights into immunotherapy for diffuse glioma.


Assuntos
Glioma/imunologia , Vacinas de mRNA/farmacologia , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/imunologia , China , Colágeno Tipo I/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Glioma/terapia , Humanos , Imunoterapia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Prognóstico , RNA Mensageiro/genética , Análise de Sobrevida , Transcriptoma/genética , Microambiente Tumoral/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Vacinas de mRNA/genética
16.
Front Genet ; 12: 678436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194477

RESUMO

INTRODUCTION: Glioma is the most common primary cancer of the central nervous system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered to play key roles in tumorigenesis in various cancers, including glioma. Because of the relevance between immune infiltrating and clinical outcome of glioma, identifying immune-related lncRNAs is urgent for better personalized management. MATERIALS AND METHODS: Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate immune infiltration, and glioma samples were divided into high immune cell infiltration group and low immune cell infiltration group. After screening differentially expressed lncRNAs in two immune groups, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune-related prognostic signature. Additionally, we explored the correlation between immune infiltration and the prognostic signature. RESULTS: A total of 653 samples were appropriate for further analyses, and 10 lncRNAs were identified as immune-related lncRNAs in glioma. After univariate Cox regression and LASSO Cox regression analysis, six lncRNAs were identified to construct a prognostic signature for glioma, which could be taken as independent prognostic factors in both univariate and multivariate Cox regression analyses. Moreover, risk score was significantly correlated with all the 29 immune-related checkpoint expression (p < 0.05) in ssGSEA except neutrophils (p = 0.43). CONCLUSION: The study constructed an immune-related prognostic signature for glioma, which contributed to improve clinical outcome prediction and guide immunotherapy.

17.
Front Oncol ; 10: 1409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974146

RESUMO

Tumor mutation burden (TMB) is a useful biomarker to predict prognosis and the efficacy of immune checkpoint inhibitors (ICIs). In this study, we aimed to explore the prognostic value of TMB and the potential association between TMB and immune infiltration in lower-grade gliomas (LGGs). Somatic mutation and RNA-sequencing (RNA-seq) data were downloaded from the Cancer Genome Atlas (TCGA) database. TMB was calculated and patients were divided into high- and low-TMB groups. After performing differential analysis between high- and low-risk groups, we identified six hub TMB and immune-related genes that were correlated with overall survival in LGGs. Then, Gene Set Enrichment Analysis was performed to screen significantly enriched GO terms between the two groups. Moreover, an immune-related risk score system was developed by LASSO Cox analysis based on the six hub genes and was validated with the Chinese Glioma Genome Atlas dataset. Using the TIMER database, we further systematically analyzed the relationships between mutants of the six hub genes and immune infiltration levels, as well as the relationships between the immune-related risk score system and the immune microenvironment in LGGs. The results showed that TMB was negatively correlated with OS and high TMB might inhibit immune infiltration in LGGs. Furthermore, the risk score system could effectively stratify patients into low- and high-risk groups in both the training and validation datasets. Multivariate Cox analysis demonstrated that TMB was not an independent prognostic factor, but the risk score was. Higher infiltration of immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) and higher levels of immune checkpoints (PD-1, CTLA-4, LAG-3, and TIM-3) were found in patients in the high-risk group. Finally, a novel nomogram model was constructed and evaluated to estimate the overall survival of LGG patients. In summary, our study provided new insights into immune infiltration in the tumor microenvironment and immunotherapies for LGGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA