Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Inorg Chem ; 61(25): 9557-9563, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687879

RESUMO

External stimuli-responsive phase transition of metal-organic frameworks (MOFs) introduces intriguing functions for diverse applications under practical settings. Herein, we reported a phase transition from cubic Ce-UiO-66 to triclinic Ce-BDC-OH under light irradiation. Such a phase transition underwent a ligand-to-metal charge transfer process, which was unambiguously revealed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, etc. We proposed a phase transition mechanism through (1) the photoreduction of the metal core from Ce4+ into Ce3+; (2) the photogeneration of •OH and hydroxylation of BDC into BDC-OH; and (3) the carboxylate migration and lattice rearrangement for transitions. The phenomenon of the Ce4+-to-Ce3+ reduction also enables a diamagnetism-to-paramagnetism transition, suggesting its potential as a photostimulus-responsive magnetic switch.

2.
Int J Med Sci ; 18(9): 1999-2007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850470

RESUMO

Precartilaginous stem cells (PCSCs) are able to initiate chondrocyte and bone development. The present study aimed to investigate the role of miR-143 and the underlying mechanisms involved in PCSC proliferation. In a rat growth plate injury model, tissue from the injury site was collected and the expression of miR-143 and its potential targets was determined. PCSCs were isolated from the rabbits' distal epiphyseal growth plate. Cell viability, DNA synthesis, and apoptosis were determined with MTT, BrdU, and flow cytometric analysis, respectively. Real time PCR and western blot were performed to detect the mRNA and protein expression of the indicated genes. Indian hedgehog (IHH) was identified as a target gene for miR-143 with luciferase reporter assay. Decreased expression of miR-143 and increased expression of IHH gene were observed in the growth plate after injury. miR-143 mimics decreased cell viability and DNA synthesis and promoted apoptosis of PCSCs. Conversely, siRNA-mediated inhibition of miR-143 led to increased growth and suppressed apoptosis of PCSCs. Transfection of miR-143 decreased luciferase activity of wild-type IHH but had no effect when the 3'-UTR of IHH was mutated. Furthermore, the effect of miR-143 overexpression was neutralized by overexpression of IHH. Our study showed that miR-143 is involved in growth plate behavior and regulates PCSC growth by targeting IHH, suggesting that miR-143 may serve as a novel target for PCSC-related diseases.


Assuntos
Lâmina de Crescimento/patologia , Proteínas Hedgehog/genética , MicroRNAs/metabolismo , Fraturas Salter-Harris/patologia , Células-Tronco/metabolismo , Animais , Apoptose/genética , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Humanos , Cultura Primária de Células , Coelhos , Ratos , Fraturas Salter-Harris/terapia , Transplante de Células-Tronco
3.
J Pediatr Orthop ; 41(9): e763-e767, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34354028

RESUMO

BACKGROUND: New surgical techniques have challenged traditional guidelines for nonsurgical treatment in pediatric and adolescent distal forearm fractures. This study was performed to compare outcomes and costs between closed reduction with percutaneous pinning (CRPP) and closed reduction with casting in the treatment of complete distal forearm fractures in children 8 to 14 years old. METHODS: A retrospective cohort study was performed of 175 displaced distal forearm fractures treated with 2 different methods in the emergency department of a children's trauma center. One hundred and fourteen children were managed using CRPP. The remaining 61 were treated with closed reduction and casting. All patients had initial follow-up radiographs. The quality of reduction and the residual angulation in both the coronal and sagittal planes were recorded. Outcomes included the angulation after reduction, residual angulation at final follow-up, radiation exposure, total immobilization time, days absent from school, total costs, and postoperative complications. RESULTS: The postreduction sagittal plane angulation was significantly lower in the CRPP group (P=0.037). While residual deformity between the groups at the 6-month final follow-up was not significantly different in either the sagittal or coronal planes (P=0.486, 0.726), patients in the nonoperative group received greater radiation than those in the operative group (P<0.001). Patients in the nonoperative group missed fewer classes and sustained lower costs (P<0.001, <0.001). The mean immobilization time in each group was not significantly different (31.4±4.4 vs. 32.8±5.9 d; P=0.227). CONCLUSIONS: Although the postreduction quality was a little better and radiation exposure was less in the CRPP group, there was no difference between the 2 groups in angulation, total immobilization time, or complication rates after 6 months. The cost and time absent from school of patients in the nonoperative group was significantly lower than in the operative group. There is no clear advantage to CRPP treatment on outcomes. Therefore, closed reduction and casting is recommended in complete distal forearm fractures of children 8 to 14 years old. LEVEL OF EVIDENCE: Level III-therapeutic study.


Assuntos
Traumatismos do Antebraço , Fraturas Ósseas , Fraturas do Rádio , Adolescente , Moldes Cirúrgicos , Criança , Antebraço , Traumatismos do Antebraço/diagnóstico por imagem , Traumatismos do Antebraço/terapia , Humanos , Fraturas do Rádio/diagnóstico por imagem , Fraturas do Rádio/terapia , Estudos Retrospectivos , Resultado do Tratamento
4.
Fish Physiol Biochem ; 47(6): 1951-1967, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34633578

RESUMO

At present, due to the influence of global warming, seasonal change, diurnal variation, and eutrophication of the water body, hypoxia has become one of the major factors limiting the stable development of cobia (Rachycentron canadum) culture. In this study, the miRNAs involved in hypoxia stress were screened, and the target genes of miRNAs were annotated and analyzed. The results showed that a total of 184 conservative microRNA (miRNA) and 121 newly predicted miRNA were obtained by sequencing the liver of control (C) and hypoxic (dissolved oxygen, DO (2.64 ± 0.25) mg/L; 3 h) (S) groups. The pathways involved in energy metabolism included starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). The results indicate that the body maintains physiological activities by regulating some important pathways at the transcriptional level under hypoxia stress, such as the conversion of aerobic metabolism and anaerobic metabolism, the reduction of energy consumption, and the promotion of red blood cell proliferation to maintain the homeostasis of the body.


Assuntos
Hipóxia , Fígado/metabolismo , MicroRNAs , Perciformes , Animais , Hipóxia/genética , MicroRNAs/genética , Perciformes/genética
5.
Small ; 16(47): e2004654, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33136308

RESUMO

Catalytic generation of reactive oxygen species has been developed as a promising methodology for tumor therapy. Direct O2•- production from intratumor oxygen exhibits exceptional tumor therapeutic efficacy. Herein, this therapy strategy is demonstrated by a pH-responsive hybrid of porous CeO2 nanorods and sodium polystyrene sulfonate that delivers high oxidative activity for O2•- generation within acidic tumor microenvironments for chemodynamic therapy and only limited oxidative activity in neutral media to limit damage to healthy organs. The hydrated polymer-nanorod hybrids with large hydrodynamic diameters form nanoreactors that locally trap oxygen and biological substrates inside and improve the charge transfer between the catalysts and substrates in the tumor microenvironment, leading to enhanced catalytic O2•- production and consequent oxidation. Together with successful in vitro and in vivo experiments, these data show that the use of hybrids provides a compelling opportunity for the delivery selective chemodynamic tumor therapy.


Assuntos
Cério , Neoplasias , Estresse Oxidativo , Polímeros , Cério/química , Cério/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Microambiente Tumoral/efeitos dos fármacos
6.
Genomics ; 111(3): 320-326, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29486210

RESUMO

Developmental dysplasia of the hip (DDH) is a common congenital malformation characterized by mismatch in shape between the femoral head and acetabulum, and leads to hip dysplasia. To date, the pathogenesis of DDH is poorly understood and may involve multiple factors, including genetic predisposition. However, comprehensive genetic analysis has not been applied to investigate a genetic component of DDH. In the present study, 10 pairs of healthy fathers and DDH daughters were enrolled to identify genetic hallmarks of DDH using high throughput whole genome sequencing. The DDH-specific DNA mutations were found in each patient. Overall 1344 genes contained DDH-specific mutations. Functional enrichment analysis showed that these genes played important roles in the cytoskeleton, microtubule cytoskeleton, sarcoplasm and microtubule associated complex. These functions affected osteoblast and osteoclast development. Therefore, we proposed that the DDH-specific mutations might affect bone development, and caused DDH. Our pairwise high throughput sequencing results comprehensively delineated genetic hallmarks of DDH. Further research into the biological impact of these mutations may inform the development of DDH diagnostic tools and allow neonatal gene screening.


Assuntos
Luxação Congênita de Quadril/genética , Mutação , Adulto , Pré-Escolar , Feminino , Luxação Congênita de Quadril/patologia , Humanos , Lactente , Masculino , Osteogênese/genética , Linhagem , Sequenciamento Completo do Genoma
8.
Appl Opt ; 57(12): 3021-3030, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29714332

RESUMO

The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.

9.
J Pediatr Orthop B ; 33(2): 160-166, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37811584

RESUMO

During the COVID-19 pandemic, the time elapsed from injury to definitive surgery necessitated delay in type III pediatric supracondylar humerus fractures. Preliminary fracture reduction was recommended in these fractures while waiting for operative treatment. The purpose of this study was to evaluate whether preliminary reduction afforded a better treatment experience and improved outcomes. A retrospective cohort analysis of 161 type III supracondylar humerus fractures compared treatment with preliminary closed fracture reduction and delayed percutaneous pin placement (110 children) to delayed combined closed reduction and pin placement (51 children) in a children's medical center. Of the preliminary reduction group, 22 (20%) required analgesic pain relief, compared to 18 (35%) in the non-preliminary reduction group ( P  = 0.037), and the preliminary reduction group had statistically less pain (assessed using the Faces Pain Scale-Revised rating) the first night after injury and the first-night post-CRPP ( P  = 0.019, P  = 0.008). Cast splitting was more frequent in the non-preliminary reduction group, 11 patients (22%) than in the preliminary reduction group, 10 patients (9%; P  = 0.029). The operative times in the preliminary reduction group were shorter ( P  < 0.001). If delay is necessary for complete repair of type III supracondylar humerus fractures, a preliminary fracture reduction with a temporary cast can be recommended, as these children will experience a more comfortable interval, with less swelling and pain, and potentially a shorter operation. Level of Evidence: Level III-therapeutic study.


Assuntos
COVID-19 , Fraturas do Úmero , Criança , Humanos , Estudos Retrospectivos , Pandemias , Pinos Ortopédicos , Úmero/cirurgia , Fraturas do Úmero/cirurgia , Fixação de Fratura , Dor , Resultado do Tratamento
10.
Heliyon ; 10(7): e28733, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576558

RESUMO

Objectives: Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disorder characterized by progressive airflow limitation. This meta-analysis aims to evaluate the effectiveness of respiratory muscle training (RMT) on key pulmonary function parameters, inspiratory muscle strength and quality of life in patients with stable COPD. Methods: A comprehensive search was conducted in the databases including PubMed, Cochrane, Web of Science, Embase, and ClinicalTrials.gov, from their inception to June 12, 2023. Randomized controlled trials (RCTs) evaluating the impact of RMT on stable COPD were included for meta-analysis. Results: In total, 12 RCTs involving 453 participants were included in the meta-analysis. RMT demonstrated a significant increase in maximal inspiratory pressure (PImax, MD, 95% CI: 14.34, 8.17 to 20.51, P < 0.001) but not on maximal expiratory pressure (PEmax). No significant improvement was observed in 6-Min walk test (6MWT), dyspnea, forced expiratory volume in 1 s (FEV1), forced vital capacity ratio (FVC) and quality of life between RMT and control groups. However, subgroup analysis revealed a significant negative effect of RMT alone on FEV1/FVC (MD, 95% CI: 2.59, -5.11 to -0.06, P = 0.04). When RMT was combined with other interventions, improvements in FEV1/FVC and FEV1 were found, although not statistically significant. Conclusion: RMT can effectively improve maximal inspiratory pressure in stable COPD patients, but the effect is slight in improving lung function, dyspnea and quality of life. It is recommended to combine with other treatment strategies to comprehensively improve the prognosis of COPD patients.

11.
J Colloid Interface Sci ; 650(Pt B): 1591-1604, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490836

RESUMO

We propose to enhance photothermal conversion via doping titanium carbide (Ti3C2) MXene nanosheets on the surfaces of phase-change microcapsules consisted of the n-Octadecane core and styrene divinylbenzene copolymer shell. Detected by scanning electron microscopy, the microcapsules showed a usually circular form with an appropriate dispersion. The thermal properties of the microcapsules were characterized using the differential scanning calorimetry and thermal conductivity instruments, realizing an excellent phase-change enthalpy of around 140 J/g, high encapsulation ratio of over 64 %, good heat transfer of 0.294 ± 0.003 W/(m·K), and great thermal reliability. More importantly, the microcapsules doped with Ti3C2 MXene nanosheets reach a solar-to-heat conversion efficiency of 85 ± 7 %, a substantial enhancement by 240 % in comparison with non-doping sample. The Ti3C2 MXene-doped microcapsules with excellent heat storage and solar-to-heat conversion capabilities offer great potential for high-efficiency solar energy utilization and can be applied to thermal energy storage systems and direct absorption solar collectors.

12.
ACS Appl Mater Interfaces ; 15(16): 20444-20457, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042829

RESUMO

High supercooling and single functionalization are the main barriers to the large-scale application of microencapsulated phase-change materials (PCMs) in the construction industry. To address these issues, we propose a new inorganic microencapsulated PCM, PW@CaWO4, which was synthesized via the in situ polymerization method using inorganic CaWO4 as shell and phase-change paraffin wax (PW) as core. We investigated the effects of different emulsifiers and core-to-shell ratios on microcapsule properties and found that the PW@CaWO4 microcapsules have regular spherical topography and good uniformity in particle size. During the synthesis process, the CaWO4 shell provides convenient conditions for heterogeneous nucleation of PW and effectively reduces the supercooling degree. The minimum supercooling degree of the PW@CaWO4 microcapsules is only 1.00 ± 0.08 °C, which is 3.41 °C lower than that of PW. Moreover, the PW@CaWO4 microcapsules can absorb ultraviolet radiation and exhibit fluorescence, which originates from the peculiar WO42- structure in the CaWO4 shell, eliminating the need for doping other light-activating ions into the shell. The newly prepared microcapsules possess several advantages, including suitable particle size, low supercooling, good heat storage, high thermal conductivity, good short-wave ultraviolet absorption, peculiar fluorescence, excellent proof of leakage, and so on. The microcapsules can be applied to fluorescent architectural energy-saving coatings.

13.
ACS Appl Mater Interfaces ; 15(8): 10414-10425, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802486

RESUMO

Atherosclerosis is a common cardiovascular disease with increasing morbidity and mortality. The pathogenesis of atherosclerosis is strongly related to endothelial dysfunction, which is induced by severe oxidative stress damage derived from reactive oxygen species (ROS). Thus, ROS plays a critical role in the pathogenesis and progression of atherosclerosis. In this work, we demonstrated that the gadolinium doping of CeO2 (Gd/CeO2) nanozymes as effective ROS scavengers delivered high performance for antiatherosclerosis. It was found that the chemical doping of Gd promoted the surface proportion of Ce3+ in the nanozymes and thereby enhanced the overall ROS scavenging ability. In vitro and in vivo experiments unambiguously showed that the Gd/CeO2 nanozymes efficiently scavenged harmful ROS at the cellular and histological levels. Further, Gd/CeO2 nanozymes were demonstrated to significantly reduce vascular lesions by reducing lipid accumulation in macrophage and decreasing inflammatory factor levels, thereby inhibiting the exacerbation of atherosclerosis. Moreover, Gd/CeO2 can serve as T1-weighted magnetic resonance imaging contrast agents, which can generate sufficient contrast to distinguish the location of plaque during living imaging. Through those efforts, Gd/CeO2 may serve as a potential diagnostic and treatment nanomedicine for the ROS-induced atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/farmacologia , Gadolínio/farmacologia , Estresse Oxidativo
14.
Nat Commun ; 14(1): 7127, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37949885

RESUMO

Inspired by structures of natural metalloenzymes, a biomimetic synthetic strategy is developed for scalable synthesis of porous Fe-N3 single atom nanozymes (pFeSAN) using hemoglobin as Fe-source and template. pFeSAN delivers 3.3- and 8791-fold higher oxidase-like activity than Fe-N4 and Fe3O4 nanozymes. The high catalytic performance is attributed to (1) the suppressed aggregation of atomically dispersed Fe; (2) facilitated mass transfer and maximized exposure of active sites for the created mesopores by thermal removal of hemoglobin (2 ~ 3 nm); and (3) unique electronic configuration of Fe-N3 for the oxygen-to-water oxidation pathway (analogy with natural cytochrome c oxidase). The pFeSAN is successfully demonstrated for the rapid colorimetric detection of glutathione with a low limit of detection (2.4 nM) and wide range (50 nM-1 mM), and further developed as a real-time, facile, rapid (~6 min) and precise visualization analysis methodology of tumors via glutathione level, showing its potentials for diagnostic and clinic applications.


Assuntos
Neoplasias , Oxirredutases , Humanos , Oxirredutases/química , Porosidade , Oxirredução , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias/diagnóstico , Colorimetria/métodos
15.
Nano Res ; 16(4): 5226-5236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36465522

RESUMO

Numerous therapeutic anti-tumor strategies have been developed in recent decades. However, their therapeutic efficacy is reduced by the intrinsic protective autophagy of tumors. Autophagy plays a key role in tumorigenesis and tumor treatment, in which the overproduction of reactive oxygen species (ROS) is recognized as the direct cause of protective autophagy. Only a few molecules have been employed as autophagy inhibitors in tumor therapy to reduce protective autophagy. Among them, hydroxychloroquine is the most commonly used autophagy inhibitor in clinics, but it is severely limited by its high therapeutic dose, significant toxicity, poor reversal efficacy, and nonspecific action. Herein, we demonstrate a reductive-damage strategy to enable tumor therapy by the inhibition of protective autophagy via the catalytic scavenging of ROS using porous nanorods of ceria (PN-CeO2) nanozymes as autophagy inhibitor. The antineoplastic effects of PN-CeO2 were mediated by its high reductive activity for intratumoral ROS degradation, thereby inhibiting protective autophagy and activating apoptosis by suppressing the activities of phosphatidylinositide 3-kinase/protein kinase B and p38 mitogen-activated protein kinase pathways in human cutaneous squamous cell carcinoma. Further investigation highlighted PN-CeO2 as a safe and efficient anti-tumor autophagy inhibitor. Overall, this study presents a reductive-damage strategy as a promising anti-tumor approach that catalytically inhibits autophagy and activates the intrinsic antioxidant pathways of tumor cells and also shows its potential for the therapy of other autophagy-related diseases. Electronic Supplementary Material: Supplementary material (cellular uptake of PN-CeO2, effects of PN-CeO2 on several common malignant tumor models, viability of HaCaT cells treated with PN-CeO2 at different concentrations, time-dependent body-weight curves of SCL-1 tumor-bearing nude mice, the biodistribution of Ce element in main tissues and tumors after injection of PN-CeO2, measurement of Ce element concentration in urine and feces samples, H&E-stained images of main organs, and measurement of liver and kidney function in mice after different treatment) is available in the online version of this article at 10.1007/s12274-022-5139-z.

16.
Adv Sci (Weinh) ; 10(4): e2204808, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479819

RESUMO

Lactate, a characteristic metabolite of the tumor microenvironment (TME), drives immunosuppression and promotes tumor progression. Material-engineered strategies for intratumoral lactate modulations demonstrate their promise for tumor immunotherapy. However, understanding of the inherent interconnections of material-enabled lactate regulation, metabolism, and immunity in the TME is scarce. To address this issue, urchin-like catalysts of the encapsulated Gd-doped CeO2 , syrosingopine, and lactate oxidase are used in ZIF-8 (USL, where U, S, and L represent the urchin-like Gd-doped CeO2 @ZIF-8, syrosingopine, and lactate oxidase, respectively) and orthotopic tumor models. The instructive relationships of intratumoral lactate depletion, metabolic reprogramming, and immune activation for catalytic immunotherapy of tumors is illustrated. The catalysts efficiently oxidize intratumoral lactate and significantly promote tumor cell apoptosis by in situ-generated ·OH, thereby reducing glucose supply and inducing mitochondrial damage via lactate depletion, thus reprogramming glycometabolism. Subsequently, such catalytic metabolic reprogramming evokes both local and systemic antitumor immunity by activating M1-polarizaed macrophages and CD8+ T cells, leading to potent antitumor immunity. This study provides valuable mechanistic insights into material-interfered tumor therapy through intratumoral lactate depletion and consequential connection with metabolic reprogramming and immunity remodeling, which is thought to enhance the efficacy of immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Ácido Láctico , Neoplasias/terapia , Imunoterapia , Terapia de Imunossupressão , Microambiente Tumoral
17.
Nanotechnology ; 23(6): 065502, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248873

RESUMO

For the first time the use of a porous microresonator placed in a microelectrofluidic system for integrated functions of nanofiltration and sensing of small biomolecules and chemical analytes in extremely dilute solution was proposed and investigated. As an example, aminoglycosides in drug residues in food and livestock products were considered as the trace chemical analyte. The filtration process of the charged analyte in aqueous solution driven by an applied electrical field and the accompanying optical whispering-gallery modes in the resonator are modeled. The dynamic process of adsorption and desorption of the analyte onto the porous matrix is studied. Deposition of the analyte inside the porous structure will alter the material refractive index of the resonator, and thus induce an optical resonance frequency shift. By measuring the optical frequency shift, the analyte concentration as well as the absorption/desorption process can be analyzed. Through an intensive numerical study, a correlation between the frequency shift and the analyte concentration and the applied electrical voltage gradient was obtained. This reveals a linear relationship between the resonance frequency shift and the analyte concentration. The applied electrical voltage substantially enhances the filtration capability and the magnitude of the optical frequency shift, pushing the porous resonator-based sensor to function at the extremely dilute picomolar concentration level for small bio/chemical molecules down to the sub-nanometer scale. Moreover, use of the second-order whispering-gallery mode is found to provide better sensitivity compared with the first-order mode.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Filtros Microporos , Nanotecnologia/instrumentação , Adsorção , Algoritmos , Desenho de Equipamento , Óptica e Fotônica/instrumentação , Porosidade , Refratometria , Soluções , Água/química
18.
Appl Opt ; 51(12): 2192-201, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534933

RESUMO

The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux.


Assuntos
Lasers , Óptica e Fotônica , Espalhamento de Radiação , Algoritmos , Anisotropia , Simulação por Computador , Luz , Modelos Estatísticos , Modelos Teóricos , Fatores de Tempo
19.
J Pediatr Orthop B ; 31(4): 365-370, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170573

RESUMO

Genu valgus is one of the most common limb deformities in hereditary multiple exostoses (HME). However, it is easily concealed and may account for subsequent osteoarthritis of the knee. The knees of 56 patients (33 men and 23 women) with HME were investigated bilaterally. Knee valgus was described by the mechanical axis deviation (MAD), mechanical lateral distal femoral angle (LDFA), and medial proximal tibial angle (MPTA). We investigated sex, age, BMI, total number of palpable osteochondromas, number of radiographic osteochondromas around the knee, forearm deformities, morphology and distribution of lesions, and correlations between these factors and genu valgus. The measurement of LDFA and MPTA was performed to identify the sources of genu valgus deformity. Based on the measurement of the mechanical axis, limbs were classified as genu valgus (n = 22) or normal mechanical axis groups (n = 90). The different severities of the genu valgus patients were classified by MAD. By bivariate logistic regression, genu valgus was significantly associated with more sessile and flared metaphyseal lesions. However, only the number of flared metaphyseal lesions had a significant influence on the severity of genu valgus. By analyzing the LDFA and MPTA, it was found that abnormalities of both proximal tibia and distal femur play important roles in genu valgus. Early detection of sessile and flared metaphyseal knee lesions in patients with HME can contribute to early intervention of genu valgus. Level of relevance: Level 2.


Assuntos
Neoplasias Ósseas , Exostose Múltipla Hereditária , Geno Valgo , Osteocondroma , Exostose Múltipla Hereditária/complicações , Exostose Múltipla Hereditária/diagnóstico por imagem , Feminino , Fêmur/diagnóstico por imagem , Geno Valgo/diagnóstico por imagem , Geno Valgo/epidemiologia , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Estudos Retrospectivos , Tíbia/diagnóstico por imagem
20.
Genes (Basel) ; 13(5)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35627230

RESUMO

Juice sac granulation (a physiological disorder) leads to large postharvest losses of pomelo (Citrus maxima). Previous studies have shown that juice sac granulation is closely related to lignin accumulation, while the molecular mechanisms underlying this disorder remain elusive in pomelo. Our results showed that the lignin content in NC (near the core) and FC (far away from the core) juice sacs overall increased from 157 DPA (days post anthesis) to 212 DPA and reached a maximum at 212 DPA. Additionally, the lignin content of NC juice sacs was higher than that of FC juice sacs. In this study, we used transcriptome-based weighted gene co-expression network analysis (WGCNA) to address how lignin formation in NC and FC juice sacs is generated during the development of pomelo. After data assembly and bioinformatic analysis, we found a most correlated module (black module) to the lignin content, then we used the 11 DEGs in this module as hub genes for lignin biosynthesis. Among these DEGs, PAL (phenylalanine ammonia lyase), HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase), 4CL2 (4-coumarate: CoA ligase), C4H (cinnamate 4-hydroxylase), C3'H (p-coumarate 3-hydroxylase), and CCoAOMT1 (caffeoyl CoA 3-Omethyltransferase) were the most distinct DEGs in granulated juice sacs. Co-expression analysis revealed that the expression patterns of several transcription factors such as MYB, NAC, OFP6, and bHLH130 are highly correlated with lignin formation. In addition, the expression patterns of the DEGs related to lignin biosynthesis and transcription factors were validated by qRT-PCR, and the results were highly concordant with the RNA-seq results. These results would be beneficial for further studies on the molecular mechanism of lignin accumulation in pomelo juice sacs and would help with citrus breeding.


Assuntos
Citrus , Lignina , Citrus/genética , Citrus/metabolismo , Coenzima A , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Lignina/genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA