Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(48): e1803465, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328296

RESUMO

Atomic thin transition-metal dichalcogenides (TMDs) are considered as an emerging platform to build next-generation semiconductor devices. However, to date most devices are still based on exfoliated TMD sheets on a micrometer scale. Here, a novel chemical vapor deposition synthesis strategy by introducing multilayer (ML) MoS2 islands to improve device performance is proposed. A four-probe method is applied to confirm that the contact resistance decreases by one order of magnitude, which can be attributed to a conformal contact by the extra amount of exposed edges from the ML-MoS2 islands. Based on such continuous MoS2 films synthesized on a 2 in. insulating substrate, a top-gated field effect transistor (FET) array is fabricated to explore key metrics such as threshold voltage (V T ) and field effect mobility (µFE ) for hundreds of MoS2 FETs. The statistical results exhibit a surprisingly low variability of these parameters. An average effective µFE of 70 cm2 V-1 s-1 and subthreshold swing of about 150 mV dec-1 are extracted from these MoS2 FETs, which are comparable to the best top-gated MoS2 FETs achieved by mechanical exfoliation. The result is a key step toward scaling 2D-TMDs into functional systems and paves the way for the future development of 2D-TMDs integrated circuits.

2.
Small ; 13(35)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722346

RESUMO

The recent exploration of semiconducting two-dimensional (2D) transition metal dichalcogenides (TMDs) with atomic thickness has taken both the scientific and technological communities by storm. Extensively investigated TMD that are accessible by large-scale synthetic methods materials are remarkably stable, such as MoS2 and WSe2 . They allow superior gate control due to their 2D nature and favorable electronic transport properties, thus suggesting a bright future for digital and RF electronics. In this review, the latest developments in the controlled synthesis of large scale TMDs are firstly introduced by discussing various approaches. The major obstacles that must be overcome to achieve wafer-scale, uniform, and high-quality TMD films for practical electronic applications are included. Advances in the electronic transport studies of TMDs are presented, such as doping, contact engineering, and mobility improvement, which contribute to overall device performance. A perspective and a look at the future for this field is provided in closing.

3.
Science ; 367(6480): 895-900, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31974160

RESUMO

In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes-a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five-septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.

4.
Nat Commun ; 11(1): 476, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980644

RESUMO

The charge-to-spin conversion efficiency is a crucial parameter in determining the performance of many useful spintronic materials. Usually, this conversion efficiency is predetermined by the intrinsic nature of solid-state materials, which cannot be easily modified without invoking chemical or structural changes in the underlying system. Here we report on successful modulation of charge-spin conversion efficiency via the metal-insulator transition in a quintessential strongly correlated electron compound vanadium dioxide (VO2). By employing ferromagnetic resonance driven spin pumping and the inverse spin Hall effect measurement, we find a dramatic change in the spin pumping signal (decrease by > 80%) and charge-spin conversion efficiency (increase by five times) upon insulator to metal transition. The abrupt change in the structural and electrical properties of this material therefore provides useful insights on the spin related physics in a strongly correlated material undergoing a phase transition.

5.
Adv Sci (Weinh) ; 5(9): 1800237, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250784

RESUMO

Benefiting from the technique of vertically stacking 2D layered materials (2DLMs), an advanced novel device architecture based on a top-gated MoS2/WSe2 van der Waals (vdWs) heterostructure is designed. By adopting a self-aligned metal screening layer (Pd) to the WSe2 channel, a fixed p-doped state of the WSe2 as well as an independent doping control of the MoS2 channel can be achieved, thus guaranteeing an effective energy-band offset modulation and large through current. In such a device, under specific top-gate voltages, a sharp PN junction forms at the edge of the Pd layer and can be effectively manipulated. By varying top-gate voltages, the device can be operated under both quasi-Esaki diode and unipolar-Zener diode modes with tunable current modulations. A maximum gate-coupling efficiency as high as ≈90% and a subthreshold swing smaller than 60 mV dec-1 can be achieved under the band-to-band tunneling regime. The superiority of the proposed device architecture is also confirmed by comparison with a traditional heterostructure device. This work demonstrates the feasibility of a new device structure based on vdWs heterostructures and its potential in future low-power electronic and optoelectronic device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA