Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Xenobiotica ; 49(10): 1164-1172, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30488748

RESUMO

ZYTP1 is a novel Poly (ADP-ribose) polymerase protein inhibitor being developed for cancer indications. The focus of the work was to determine if ZYTP1 had a perpetrator role in the in vitro inhibition of cytochrome P450 (CYP) enzymes to aid dosing decisions during the clinical development of ZYTP1. ZYTP1 IC50 for CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4/5 was determined using human liver microsomes and LC-MS/MS detection. CYP3A4/5 IC50 of depropylated metabolite of ZYTP1 was also determined. Time dependent inhibition of CYP3A4/5 by ZYTP1 was also assessed using substrates, testosterone and midazolam. The mean IC50 values of ZYTP1 were >100 µM for CYP1A2, 2B6 and 2D6, while 56.1, 24.5, 39.5 and 23.3-58.7 µM for CYP2C8, 2C9, 2C19 and 3A4/5, respectively. The CYP3A4/5 IC50 of depropylated metabolite was 11.95-24.51 µM. Time dependent CYP3A4/5 inhibition was noted for testosterone and midazolam with IC50 shift of 10.9- and 39.9-fold, respectively. With midazolam, the kinact and KI values of ZYTP1 were 0.075 min-1 and 4.47 µM for the CYP3A4/5 time dependent inhibition, respectively. Because of potent inhibition of CYP3A4/5, drugs that undergo metabolism via CYP3A4/5 pathway should be avoided during ZYTP1 therapy.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos/enzimologia , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
2.
Xenobiotica ; 49(6): 698-707, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29873579

RESUMO

Pharmacokinetics of voriconazole, an anti-fungal agent, was determined in collagen-induced arthritic (CIA) and healthy DBA/1J mice. CIA was confirmed in DBA/1J mice by clinical scoring and histological analysis. In vivo oral pharmacokinetic study (3 mg/kg) and in vitro stability assessment in liver microsomes were performed in CIA vs. healthy DBA/1J mice. Additionally, hepatic portal vein cannulated (HPVC) CIA and healthy mice were used to clarify the role of gut first-pass effect. Voriconazole/N-oxide metabolite was measured in plasma and in vitro samples using liquid chromatography tandem-mass spectrometry method. Voriconazole exposure was reduced in CIA by 27% as compared to healthy mice. Formation of voriconazole N-oxide was higher in CIA mice as evidenced by higher molar Cmax ratio (i.e. metabolite/parent) of 2.08 vs. 1.66 in healthy mice. Because voriconazole was stable in microsomes, involvement of presystemic gut metabolism was suspected for decreased voriconazole exposure and formation of higher molar ratio of metabolite. HPVC work revealed higher formation of voriconazole N-oxide in CIA relative to healthy mice resulting in Cmax/AUC ratios of 0.41/0.54 and 0.08/0.17, respectively, confirming first-pass effect. The findings may have implications in the clinical therapy of arthritis patients who are concomitantly given voriconazole for the management of fungal infections.


Assuntos
Antifúngicos/farmacocinética , Artrite Experimental/metabolismo , Voriconazol/farmacocinética , Animais , Antifúngicos/química , Artrite Experimental/complicações , Masculino , Camundongos Endogâmicos DBA , Micoses/complicações , Micoses/tratamento farmacológico , Voriconazol/química
3.
Drug Metab Lett ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35293300

RESUMO

BACKGROUND: Identification of clinical drug-drug interaction (DDI) risk is an important aspect of drug discovery and development owing to poly-pharmacy in present-day clinical therapy. Drug metabolizing enzymes (DME) plays important role in the efficacy and safety of drug candidates. Hence evaluation of a New Chemical Entity (NCE) as a victim or perpetrator is very crucial for DDI risk mitigation. ZY12201 (2-((2-(4-(1H-imidazol-1-yl) phenoxy) ethyl) thio)-5-(2-(3, 4- dimethoxy phenyl) propane-2-yl)-1-(4-fluorophenyl)-1H-imidazole) is a novel and potent Takeda-G-protein-receptor-5 (TGR-5) agonist. ZY12201 was evaluated in-vitro to investigate the DDI liabilities. OBJECTIVE: The key objective was to evaluate the CYP inhibition potential of ZY12201 for an opportunity to use it as a tool compound for pan CYP inhibition activities. METHOD: In-vitro drug metabolizing enzymes (DME) inhibition potential of ZY12201 was evaluated against major CYP isoforms (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4/5), aldehyde oxidase (AO), monoamine oxidase (MAO), and flavin-containing monooxygenase (FMO in human liver cytosol/mitochondrial preparation/ microsomes using probe substrates and Liquid Chromatography with tandem mass spectrometry (LC-MS-MS) method. RESULTS: The study conducted on ZY12201 at 100 µM ZY12201 was found to reduce the metabolism of vanillin (AO probe substrate), tryptamine (MAO probe substrate), and benzydamine (FMO probe substrate) by 49.2%, 14.7%, and 34.9%, respectively. ZY12201 Ki values were 0.38, 0.25, 0.07, 0.01, 0.06, 0.02, 7.13, 0.03 and 0.003 µM for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5 (substrate: testosterone) and CYP3A4/5 (substrate: midazolam), respectively. Time-dependant CYP inhibition potential of ZY12201 was assessed against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 and no apparent IC50 shift was observed. CONCLUSIONS: ZY12201, at 100 µM concentration showed low inhibition potential of AO, MAO, and FMO. ZY12201 was found as a potent inhibitor of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 while moderately inhibits to CYP2E1. Inhibition of CYP1A2, CYP2B6, CYP2C19, and CYP2E1 by ZY12201 was competitive, while inhibition of CYP2C8, CYP2C9, CYP2D6, and CYP3A4/5 was of mixed-mode. ZY12201 is a non-time-dependent inhibitor of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5. In summary, the reported Ki values unequivocally support that ZY12201 has a high potential to inhibit all major CYP isoforms. ZY12201 can be effectively used as a tool compound for in-vitro evaluation of CYP-based metabolic contribution to total drug clearance in the lead optimization stage of Drug Discovery Research.

4.
Pharmacol Res Perspect ; 8(4): e00565, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790160

RESUMO

Bruton's tyrosine kinase (BTK) plays a central and pivotal role in controlling the pathways involved in the pathobiology of cancer, rheumatoid arthritis (RA), and other autoimmune disorders. ZYBT1 is a potent, irreversible, specific BTK inhibitor that inhibits the ibrutinib-resistant C481S BTK with nanomolar potency. ZYBT1 is found to be a promising molecule to treat both cancer and RA. In the present report we profiled the molecule for in-vitro, in-vivo activity, and pharmacokinetic properties. ZYBT1 inhibits BTK and C481S BTK with an IC50 of 1 nmol/L and 14 nmol/L, respectively, inhibits the growth of various leukemic cell lines with IC50 of 1 nmol/L to 15 µmol/L, blocks the phosphorylation of BTK and PLCγ2, and inhibits secretion of TNF-α, IL-8 and IL-6. It has favorable pharmacokinetic properties suitable for using as an oral anti-cancer and anti-arthritic drug. In accordance with the in-vitro properties, it demonstrated robust efficacy in murine models of collagen-induced arthritis (CIA) and streptococcal cell wall (SCW) induced arthritis. In both models, ZYBT1 alone could suppress the progression of the diseases. It also reduced the growth of TMD8 xenograft tumor. The results suggested that ZYBT1 has high potential for treating RA, and cancer.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/enzimologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética
5.
Eur J Pharm Sci ; 130: 107-113, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30633968

RESUMO

Saroglitazar, a PPAR αÒ® agonist, is currently undergoing global development for the treatment of NASH and other indications. Saroglitazar showed CYP2C8 inhibition in human liver microsomes (IC50: 2.9 µM). The aim was to carry out drug-drug interaction (DDI) studies in Wistar rats using saroglitazar (perpetrator drug) with five CYP2C8 substrates. Also, the in vitro CYP2C8 inhibitory potential of saroglitazar in rat liver microsomes (RLM) was evaluated to justify use of preclinical model. The oral pharmacokinetics of various CYP2C8 substrates; montelukast, rosiglitazone, pioglitazone, repaglinide and intravenous pharmacokinetics of paclitaxel was assessed in the presence/absence of oral saroglitazar (4 mg/kg) in Wistar rats. A separate study was performed to assess the oral pharmacokinetics of saroglitazar. Serial blood samples were collected from all studies and the harvested plasma were stored frozen until bioanalysis. LC-MS/MS was used for the analysis of various analytes; concentration data was subjected to noncompartmental pharmacokinetic analysis. Statistical tests (unpaired t-test) were employed to judge the level of DDI. Generally, the pharmacokinetics of CYP2C8 substrates was not affected by the concomitant intake of saroglitazar as judged by the overall exposure (AUC0-last and AUC0-inf) and elimination half-life. The CYP2C8 IC50 of 4.5 µM in RLM for saroglitazar, supported the use of rats for this DDI study. In conclusion, pharmacokinetic data of diverse CYP2C8 substrates suggested that coadministration of saroglitazar did not cause clinically relevant DDI.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacocinética , Citocromo P-450 CYP2C8/metabolismo , Microssomos Hepáticos/metabolismo , Fenilpropionatos/farmacocinética , Pirróis/farmacocinética , Acetatos/farmacocinética , Animais , Carbamatos/farmacocinética , Ciclopropanos , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Paclitaxel/farmacocinética , Pioglitazona/farmacocinética , Piperidinas/farmacocinética , Quinolinas/farmacocinética , Ratos , Ratos Wistar , Rosiglitazona/farmacocinética , Sulfetos
6.
Drug Metab Lett ; 12(2): 101-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30117405

RESUMO

BACKGROUND: The use of polypharmacy in the present day clinical therapy has made the identification of clinical drug-drug interaction risk an important aspect of drug development process. Although many drugs can be metabolized to sulfoxide and/or sulfone metabolites, seldom is known on the CYP inhibition potential and/or the metabolic fate for such metabolites. OBJECTIVE: The key objectives were: a) to evaluate the in vitro CYP inhibition potential of selected parent drugs with sulfoxide/sulfone metabolites; b) to assess the in vitro metabolic fate of the same panel of parent drugs and metabolites. METHODS: In vitro drug-drug interaction potential of test compounds was investigated in two stages; 1) assessment of CYP450 inhibition potential of test compounds using human liver microsomes (HLM); and 2) assessment of test compounds as substrate of Phase I enzymes; including CYP450, FMO, AO and MAO using HLM, recombinant human CYP enzymes (rhCYP), Human Liver Cytosol (HLC) and Human Liver Mitochondrial (HLMit). All samples were analysed by LC-MS-MS method. RESULTS: CYP1A2 was inhibited by methiocarb, triclabendazole, triclabendazole sulfoxide, and ziprasidone sulfone with IC50 of 0.71 µM, 1.07 µM, 4.19 µM, and 17.14 µM, respectively. CYP2C8 was inhibited by montelukast, montelukast sulfoxide, montelukast sulfone, tribendazole, triclabendazole sulfoxide, and triclabendazole sulfone with IC50 of 0.08 µM, 0.05 µM, 0.02 µM, 3.31 µM, 8.95 µM, and 1.05 µM, respectively. CYP2C9 was inhibited by triclabendazole, triclabendazole sulfoxide, triclabendazole sulfone, montelukast, montelukast sulfoxide and montelukast sulfone with IC50 of 1.17 µM, 1.95 µM, 0.69 µM, 1.34 µM, 3.61 µM and 2.15 µM, respectively. CYP2C19 was inhibited by triclabendazole and triclabendazole sulfoxide with IC50 of 0.25 and 0.22, respectively. CYP3A4 was inhibited by montelukast sulfoxide and triclabendazole with IC50 of 9.33 and 15.11, respectively. Amongst the studied sulfoxide/sulfone substrates, the propensity of involvement of CY2C9 and CYP3A4 enzyme was high (approximately 56% of total) in the metabolic fate experiments. CONCLUSION: Based on the findings, a proper risk assessment strategy needs to be factored (i.e., perpetrator and/or victim drug) to overcome any imminent risk of potential clinical drug-drug interaction when sulfoxide/sulfone metabolite(s) generating drugs are coadministered in therapy.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfonas/farmacologia , Sulfóxidos/farmacologia , Acetatos/metabolismo , Albendazol/análogos & derivados , Albendazol/metabolismo , Aldicarb/análogos & derivados , Aldicarb/metabolismo , Biotransformação , Ciclopropanos , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Isoenzimas , Metiocarb/análogos & derivados , Metiocarb/metabolismo , Microssomos Hepáticos/enzimologia , Piperazinas/metabolismo , Quinolinas/metabolismo , Medição de Risco , Sulfetos , Sulfonas/metabolismo , Sulfonas/toxicidade , Sulfóxidos/metabolismo , Sulfóxidos/toxicidade , Tiazóis/metabolismo , Triclabendazol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA