Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 4): 896-909, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843003

RESUMO

Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.

2.
Opt Express ; 32(11): 19294-19307, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859067

RESUMO

Double-slit interference experiments using monochromatic hard X-rays with the energy of 25 keV are presented. The experiments were performed at a synchrotron source with a distance of 110 m between the interferometer and the detector to produce an interference pattern with a sufficiently broad period that could be adequately sampled by a photon-counting detector with 75 micrometre pixels. In the single-particle version of the experiment, over one million image frames with a single registered photon in each one were collected. The sum of these frames showed a clear presence of the interference pattern with the expected period. Subsequent analysis provided an objective estimation of the minimal number of detected photons required to determine, in accordance with the Rose criterion, the presence of the photon interference. Apart from a general theoretical interest, these investigations were aimed at exploring the possibility of medical X-ray phase-contrast imaging in photon-counting regime at minimal radiation doses.

3.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1249-1259, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706779

RESUMO

A new method is developed for 3D reconstruction of multimaterial objects using propagation-based x-ray phase-contrast tomography (PB-CT) with phase retrieval via contrast-transfer-function (CTF) formalism. The approach differs from conventional PB-CT algorithms, which apply phase retrieval to individual 2D projections. Instead, this method involves performing phase retrieval to the CT-reconstructed volume in 3D. The CTF formalism is further extended to the cases of partially coherent illumination and strongly absorbing samples. Simulated results demonstrate that the proposed post-reconstruction CTF method provides fast and stable phase retrieval, producing results equivalent to conventional pre-reconstruction 2D CTF phase retrieval. Moreover, it is shown that application can be highly localized to isolated objects of interest, without a significant loss of quality, thus leading to increased computational efficiency. Combined with the extended validity of the CTF to greater propagation distances, this method provides additional advantages over approaches based on the transport-of-intensity equation.

4.
J Opt Soc Am A Opt Image Sci Vis ; 39(12): C143-C155, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520754

RESUMO

A unified method for three-dimensional reconstruction of objects from transmission images collected at multiple illumination directions is described. The method may be applicable to experimental conditions relevant to absorption-based, phase-contrast, or diffraction imaging using x rays, electrons, and other forms of penetrating radiation or matter waves. Both the phase retrieval (also known as contrast transfer function correction) and the effect of Ewald sphere curvature (in the cases with a shallow depth of field and significant in-object diffraction) are incorporated in the proposed algorithm and can be taken into account. Multiple scattering is not treated explicitly but can be mitigated as a result of angular averaging that constitutes an essential feature of the method. The corresponding numerical algorithm is based on three-dimensional gridding which allows for fast computational implementation, including a straightforward parallelization. The algorithm can be used with any scanning geometry involving plane-wave illumination. A software code implementing the proposed algorithm has been developed, tested on simulated and experimental image data, and made publicly available.


Assuntos
Algoritmos , Tomografia , Software
5.
J Opt Soc Am A Opt Image Sci Vis ; 39(5): 936-947, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215455

RESUMO

A method is proposed for high-resolution, three-dimensional reconstruction of internal structures of objects from planar transmission images. The described approach can be used with any form of radiation or matter waves, in principle, provided that the depth of field is smaller than the thickness of the sample. The physical optics basis for the method is elucidated, and the reconstruction algorithm is presented in detail. A simulated example demonstrates an application of the method to three-dimensional electron transmission imaging of a nanoparticle under realistic radiation dose and spatial resolution constraints. It is envisaged that the method can be applicable in high-resolution transmission electron microscopy, soft x-ray microscopy, ultrasound imaging, and other areas.


Assuntos
Imageamento Tridimensional , Tomografia , Algoritmos , Imageamento Tridimensional/métodos , Microscopia/métodos
6.
Microsc Microanal ; : 1-17, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35485646

RESUMO

A method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-resolution transmission electron microscopy is presented. The method effectively corrects for the Ewald sphere curvature by taking into account the in-particle propagation of the electron beam. Numerical simulations demonstrate that the proposed method is capable of accurately reconstructing biological molecules or nanoparticles from high-resolution defocused images under conditions achievable in single-particle electron cryo-microscopy or electron tomography with realistic radiation doses, non-trivial aberrations, multiple scattering, and other experimentally relevant factors. The physics of the method is based on the well-known Diffraction Tomography formalism, but with the phase-retrieval step modified to include a conjugation of the phase (i.e., multiplication of the phase by a negative constant). At each illumination direction, numerically backpropagating the beam with the conjugated phase produces maximum contrast at the location of individual atoms in the molecule or nanoparticle. The resultant algorithm, Conjugated Holographic Reconstruction, can potentially be incorporated into established software tools for single-particle analysis, such as, for example, RELION or FREALIGN, in place of the conventional contrast transfer function correction procedure, in order to account for the Ewald sphere curvature and improve the spatial resolution of the three-dimensional reconstruction.

7.
Eur Radiol ; 30(5): 2740-2750, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31974689

RESUMO

OBJECTIVES: To evaluate and compare the image quality of propagation-based phase-contrast computed tomography (PB-CT) using synchrotron radiation and conventional cone-beam breast computed tomography (CBBCT) based on various radiological image quality criteria. METHODS: Eight excised breast tissue samples of various sizes and containing different lesion types were scanned using PB-CT at a synchrotron facility and using CBBCT at a university-affiliated breast imaging centre. PB-CT scans were performed at two different mean glandular dose (MGD) levels: standard (5.8 mGy) and low (1.5 mGy), for comparison with CBBCT scans at the standard MGD (5.8 mGy). Image quality assessment was carried out using six quality criteria and six independent medical imaging experts in a reading room with mammography workstations. The interobserver agreement between readers was evaluated using intraclass correlation coefficient (ICC), and image quality was compared between the two breast imaging modalities using the area under the visual grading characteristic curve (AUCVGC). RESULTS: Interobserver agreement between the readers showed moderate reliability for five image criteria (ICC: ranging from 0.488 to 0.633) and low reliability for one criterion (image noise) (ICC 0.307). For five image quality criteria (overall quality, perceptible contrast, lesion sharpness, normal tissue interfaces, and calcification visibility), both standard-dose PB-CT images (AUCVGC 0.958 to 1, p ≤ .05) and low dose PB-CT images (AUCVGC 0.785 to 0.834, p ≤ .05) were of significantly higher image quality than standard-dose CBBCT images. CONCLUSIONS: Synchrotron-based PB-CT can achieve a significantly higher radiological image quality at a substantially lower radiation dose compared with conventional CBBCT. KEY POINTS: • PB-CT using synchrotron radiation results in higher image quality than conventional CBBCT for breast imaging. • PB-CT using synchrotron radiation requires a lower radiation dose than conventional CBBCT for breast imaging. • PB-CT can help clinicians diagnose patients with breast cancer.


Assuntos
Doenças Mamárias/diagnóstico , Mama/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Mamografia/métodos , Síncrotrons , Feminino , Humanos , Doses de Radiação , Reprodutibilidade dos Testes
8.
J Synchrotron Radiat ; 26(Pt 3): 825-838, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074448

RESUMO

The following article describes a method for 3D reconstruction of multi-material objects based on propagation-based X-ray phase-contrast tomography (PB-CT) with phase retrieval using the homogeneous form of the transport of intensity equation (TIE-Hom). Unlike conventional PB-CT algorithms that perform phase retrieval of individual projections, the described post-reconstruction phase-retrieval method is applied in 3D to a localized region of the CT-reconstructed volume. This work demonstrates, via numerical simulations, the accuracy and noise characteristics of the method under a variety of experimental conditions, comparing it with both conventional absorption tomography and 2D TIE-Hom phase retrieval applied to projection images. The results indicate that the 3D post-reconstruction method generally achieves a modest improvement in noise suppression over existing PB-CT methods. It is also shown that potentially large computational gains over projection-based phase retrieval for multi-material samples are possible. In particular, constraining phase retrieval to a localized 3D region of interest reduces the overall computational cost and eliminates the need for multiple CT reconstructions and global 2D phase retrieval operations for each material within the sample.

9.
AJR Am J Roentgenol ; 211(1): 133-145, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29792739

RESUMO

OBJECTIVE: The purpose of this article is to review different x-ray phase-contrast breast imaging techniques and their potential application in clinical settings. CONCLUSION: Phase-contrast imaging depicts not only the absorption contrast but also the refraction contrast of the transmitted x-ray beam. Early data suggest that this new modality may overcome some of the diagnostic limitations associated with current clinically available mammography systems and that it has potential for improving breast cancer detection.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Detecção Precoce de Câncer , Feminino , Humanos , Programas de Rastreamento , Sensibilidade e Especificidade , Raios X
10.
J Opt Soc Am A Opt Image Sci Vis ; 34(12): 2251-2260, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29240102

RESUMO

The effectiveness of reconstructive imaging using the homogeneous transport of intensity equation may be regarded as "unreasonable," because it has been shown to significantly increase signal-to-noise ratio while preserving spatial resolution, compared to equivalent conventional absorption-based imaging techniques at the same photon fluence. We reconcile this surprising behavior by analyzing the propagation of noise in typical in-line holography experiments. This analysis indicates that novel imaging techniques may be designed that produce high signal-to-noise images at low radiation doses without sacrificing spatial resolution.

11.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1577-1584, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036160

RESUMO

A reciprocal relationship between the autocovariance of the light intensity in the source plane and in the far-field detector plane is presented in a form analogous to the classical van Cittert-Zernike theorem, but involving intensity correlation functions. A "classical" version of the reciprocity relationship is considered first, based on the assumption of circular Gaussian statistics of the complex amplitudes in the source plane. The result is consistent with the theory of Hanbury Brown-Twiss interferometry, but it is shown to be also applicable to estimation of the source size or the spatial resolution of the detector from the noise power spectrum of flat-field images. An alternative version of the van Cittert-Zernike theorem for intensity correlations is then derived for a quantized electromagnetic beam in a coherent state, which leads to Poisson statistics for the intrinsic intensity of the beam.

12.
Opt Express ; 24(15): 17168-82, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464167

RESUMO

A simple model for image formation in linear shift-invariant systems is considered, in which both the detected signal and the noise variance are varying slowly compared to the point-spread function of the system. It is shown that within the constraints of this model, the square of the signal-to-noise ratio is always proportional to the "volume" of the spatial resolution unit. In the case of Poisson statistics, the ratio of these two quantities divided by the incident density of the imaging particles (e.g. photons) represents a dimensionless invariant of the imaging system, which was previously termed the intrinsic imaging quality. The relationship of this invariant to the notion of information capacity of communication and imaging systems, which was previously considered by Shannon, Gabor and others, is investigated. The results are then applied to a simple generic model of quantitative imaging of weakly scattering objects, leading to an estimate of the upper limit for the amount of information about the sample that can be obtained in such experiments. It is shown that this limit depends only on the total number of imaging particles incident on the sample, the average scattering coefficient, the size of the sample and the number of spatial resolution units.

13.
J Opt Soc Am A Opt Image Sci Vis ; 33(4): 464-74, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140752

RESUMO

The contrast-transfer-function (CTF) approximation, widely used in various phase-contrast imaging techniques, is revisited. CTF validity conditions are extended to a wide class of strongly absorbing and refracting objects, as well as to nonuniform partially coherent incident illumination. Partially coherent free-space propagators, describing amplitude and phase in-line contrast, are introduced and their properties are investigated. The present results are relevant to the design of imaging experiments with partially coherent sources, as well as to the analysis and interpretation of the corresponding images.

14.
J Synchrotron Radiat ; 22(6): 1509-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524316

RESUMO

Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Mamografia/instrumentação , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Feminino , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Óptica/instrumentação
15.
Opt Express ; 23(3): 3373-81, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836194

RESUMO

Statistical aspects of Young's double-slit diffraction experiment are analysed quantitatively. It is shown that the signal-to-noise ratio and the spatial resolution in the detected diffraction pattern satisfy a duality relationship which implies that both of them cannot be improved simultaneously beyond a certain limit if the total number of particles forming the image is fixed. As a consequence of this duality, it is possible to estimate the minimal number of particles that have to be detected in order for two slits separated by a given distance to be resolved with a confidence level corresponding to a pre-defined signal-to-noise ratio, e.g. according to the Rose criterion. These results are related to the recently introduced imaging system quality characteristic which combines the spatial resolution and the noise sensitivity, and allows one to estimate the efficiency with which imaging quanta are utilised in a system to deliver maximal amount of information about the imaged object. The presented results can be useful for applications where the imaging quanta are at a premium or where minimization of the radiation dose is important.

16.
Adv Exp Med Biol ; 823: 191-205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25381109

RESUMO

This chapter describes a novel way of carrying out image analysis, reconstruction and processing tasks using cloud based service provided on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) infrastructure. The toolbox allows users free access to a wide range of useful blocks of functionalities (imaging functions) that can be connected together in workflows allowing creation of even more complex algorithms that can be re-run on different data sets, shared with others or additionally adjusted. The functions given are in the area of cellular imaging, advanced X-ray image analysis, computed tomography and 3D medical imaging and visualisation. The service is currently available on the website www.cloudimaging.net.au .


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Pesquisa Biomédica/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Internet , Oncologia/métodos , Neuritos/diagnóstico por imagem , Neurociências/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X , Raios X
17.
Opt Express ; 22(8): 9087-94, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787797

RESUMO

It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging. It is shown that in the latter case the spatial resolution and the noise can sometimes be decoupled, potentially leading to a substantial increase in the imaging quality.

18.
Br J Radiol ; 96(1150): 20221189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665247

RESUMO

OBJECTIVES: Propagation-based phase-contrast computed tomography (PB-CT) is a new imaging technique that exploits refractive and absorption properties of X-rays to enhance soft tissue contrast and improve image quality. This study compares image quality of PB-CT and absorption-based CT (AB-CT) for breast imaging while exploring X-ray energy and radiation dose. METHODS: Thirty-nine mastectomy samples were scanned at energy levels of 28-34keV using a flat panel detector at radiation dose levels of 4mGy and 2mGy. Image quality was assessed using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), spatial resolution (res) and visibility (vis). Statistical analysis was performed to compare PB-CT images against their corresponding AB-CT images scanned at 32keV and 4mGy. RESULTS: The PB-CT images at 4mGy, across nearly all energy levels, demonstrated superior image quality than AB-CT images at the same dose. At some energy levels, the 2mGy PB-CT images also showed better image quality in terms of CNR/Res and vis compared to the 4mGy AB-CT images. At both investigated doses, SNR and SNR/res were found to have a statistically significant difference across all energy levels. The difference in vis was statistically significant at some energy levels. CONCLUSION: This study demonstrates superior image quality of PB-CT over AB-CT, with X-ray energy playing a crucial role in determining image quality parameters. ADVANCES IN KNOWLEDGE: Our findings reveal that standard dose PB-CT outperforms standard dose AB-CT across all image quality metrics. Additionally, we demonstrate that low dose PB-CT can produce superior images compared to standard dose AB-CT in terms of CNR/Res and vis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Raios X , Neoplasias da Mama/diagnóstico por imagem , Mastectomia , Mama/diagnóstico por imagem , Doses de Radiação , Razão Sinal-Ruído , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
19.
J Synchrotron Radiat ; 19(Pt 5): 728-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22898953

RESUMO

The first monochromatic X-ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X-ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point-spread function for the X-ray imaging system and harmonic contamination of the X-ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X-ray spectrum prior to monochromatization, allowance for the response of the double-crystal Si monochromator used (via X-ray dynamical theory), as well as a thorough assessment of the role of X-ray phase-contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point-spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X-ray tomography data, across a wide range of disciplines, including materials and life sciences.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Artefatos , Síncrotrons
20.
Br J Radiol ; 95(1138): 20211243, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230134

RESUMO

OBJECTIVE: To design a device that can support the breast during phase-contrast tomography, and characterise its fit parameterisation and comfort rating. METHODS: 27 participants were recruited to trial a system for breast support during simulated phase contrast imaging, including being positioned on a prone imaging table while wearing the device. Participants underwent a photogrammetry analysis to establish the geometric parameterisations. All participants trialled a single-cup design while 14 participants also trialled a double-cup with suction holder and all completed a series of questionnaires to understand subjective comfort. RESULTS: Photogrammetry revealed significant positive correlations between bra cup volume and measured prone volume (p < 0.001), and between "best fit" single-cup holder volume and measured prone volume (p < 0.005). Both holders were suitable devices in terms of subjective comfort and immobilisation while stationary. However, some re-engineering to allow for quick, easy fitting in future trials where rotation through the radiation beam will occur is necessary. Light suction was well-tolerated when required. CONCLUSION: All participants indicated the table and breast support devices were comfortable, and they would continue in the trial. ADVANCES IN KNOWLEDGE: Phase contrast tomography is an emerging breast imaging modality and clinical trials are commencing internationally. This paper describes the biomedical engineering designs, in parallel with optimal imaging, that are necessary to measure breast volume so that adequate breast support can be achieved. Breast support devices have implications for comfort, motion correction and maximising breast tissue visualisation.


Assuntos
Mama , Tomografia Computadorizada por Raios X , Mama/diagnóstico por imagem , Humanos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA