Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 150: 44-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080242

RESUMO

Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.


Assuntos
Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Isótopos de Nitrogênio , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Marcadores de Spin , Troponina I/química
2.
J Struct Biol ; 200(3): 376-387, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28864299

RESUMO

The absence of a crystal structure of the calcium free state of the cardiac isoform of the troponin complex has hindered our understanding of how the simple binding of Ca2+ triggers conformational changes in troponin which are then propagated to enable muscle contraction. Here we have used continuous wave (CW) and Double Electron-Electron Resonance (DEER) pulsed EPR spectroscopy to measure distances between TnI and TnC to track the movement of the functionally important regulatory 'switch' region of cardiac Tn. Spin labels were placed on the switch region of Troponin I and distances measured to Troponin C. Under conditions of high Ca2+, the interspin distances for one set (TnI151/TnC84) were 'short' (9-10Å) with narrow distance distribution widths (3-8Å) indicating the close interaction of the switch region with the N-lobe of TnC. Additional spin populations representative of longer interspin distances were detected by DEER. These longer distance populations, which were ∼16-19Å longer than the short distance populations, possessed notably broader distance distribution widths (14-29Å). Upon Ca2+ removal, the interspin population shifted toward the longer distances, indicating the release of the switch region from TnC and an overall increase in disorder for this region. Together, our results suggest that under conditions of low Ca2+, the close proximity of the TnI switch region to TnC in the cardiac isoform is necessary for promoting the interaction between the regulatory switch helix with the N-lobe of cardiac Troponin C, which, unlike the skeletal isoform, is largely in a closed conformation.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Miocárdio/metabolismo , Troponina C/química , Troponina I/química , Troponina I/metabolismo , Animais , Cálcio/metabolismo , Cisteína/genética , Ratos , Solubilidade , Marcadores de Spin , Troponina C/genética , Troponina C/metabolismo
3.
Phys Chem Chem Phys ; 18(17): 12043-9, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27067120

RESUMO

Elucidating the decay mechanisms of photoexcited charge carriers is key to improving the efficiency of solar cells based on organo-lead halide perovskites. Here we investigate the spectral dependence (via above-, inter- and sub-bandgap optical excitations) of direct and trap-mediated decay processes in CH3NH3PbI3 using time resolved microwave conductivity (TRMC). We find that the total end-of-pulse mobility is excitation wavelength dependent - the mobility is maximized (172 cm(2) V(-1) s(-1)) when charge carriers are excited by near bandgap light (780 nm) in the low charge carrier density regime (10(9) photons per cm(2)), and is lower for above- and sub-bandgap excitations. Direct recombination is found to occur on the 100-400 ns timescale across excitation wavelengths near and above the bandgap, whereas indirect recombination processes displayed distinct behaviour following above- and sub-bandgap excitations, suggesting the influence of different trap distributions on recombination dynamics.

4.
J Vis Exp ; (121)2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28287568

RESUMO

A method for investigating recombination dynamics of photo-induced charge carriers in thin film semiconductors, specifically in photovoltaic materials such as organo-lead halide perovskites is presented. The perovskite film thickness and absorption coefficient are initially characterized by profilometry and UV-VIS absorption spectroscopy. Calibration of both laser power and cavity sensitivity is described in detail. A protocol for performing Flash-photolysis Time Resolved Microwave Conductivity (TRMC) experiments, a non-contact method of determining the conductivity of a material, is presented. A process for identifying the real and imaginary components of the complex conductivity by performing TRMC as a function of microwave frequency is given. Charge carrier dynamics are determined under different excitation regimes (including both power and wavelength). Techniques for distinguishing between direct and trap-mediated decay processes are presented and discussed. Results are modelled and interpreted with reference to a general kinetic model of photoinduced charge carriers in a semiconductor. The techniques described are applicable to a wide range of optoelectronic materials, including organic and inorganic photovoltaic materials, nanoparticles, and conducting/semiconducting thin films.


Assuntos
Lasers , Micro-Ondas , Nanopartículas/química , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA