Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(43): 12861-12869, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30269505

RESUMO

Colloid lithography represents a simple and efficient method for creation of a large-scale template for subsequent surface patterning, deposition of regular metal nanostructures, or periodical surface structures. However, this method is significantly restricted by its ability to create only a limited number of structures with confined geometry and symmetry features. To overcome this limitation, different techniques, such as plasma treatment or tilting angle metal deposition, have been proposed. In this paper, an alternative method based on the vapor annealing of ordered single polystyrene (PS) microspheres layer, followed by the surface grafting with arenediazonium tosylates is proposed. Application of vapor treatment before surface grafting allows effective control of the area screened by PS microspheres. Pristine and vapor-annealed microsphere arrays on the gold substrate were electrochemically modified using ADTs. Subsequent removal of the PS microsphere mask enabled to prepare well-defined nanostructures with controllable surface features. In particular, prepared periodic arrangements were achieved by the grafting of OFGs to the empty interspaces between nanopore arrays. The process of sample preparation was controlled, and the properties of prepared structures were characterized by various techniques, including atomic force microscopy (AFM), conductive AFM, scanning electron microscopy energy-dispersive X-ray spectrometry, Raman spectroscopy, and voltammetry.

2.
Nanoscale ; 16(10): 5313-5322, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372626

RESUMO

Light-driven asymmetric photocatalysis represents a straightforward approach in modern organic chemistry. In comparison to the homogeneous one, heterogeneous asymmetric photocatalysis has the advantages of easy catalyst separation, recovery, and reuse, thus being cost- and time-effective. Here, we demonstrate how plasmon-active centers (gold nanoparticles - AuNPs) allow visible light triggering of chiral catalyst (proline) in model aldol reaction between acetone and benzaldehyde. The metal-organic framework UiO-66-NH2 was used as an advanced host platform for the loading of proline and AuNPs and their stabilization in spatial proximity. Aldol reactions were carried out at a low temperature (-20 °C) under light illumination which resulted in 91% ee with a closed-to-quantitative yield, 4.5 times higher than that without light (i.e. in the absence of plasmon triggering). A set of control experiments and quantum chemical modeling revealed that the plasmon assistance proceeds through hot electron excitation followed by an interaction with an enamine with the formation of anion radical species. We also demonstrated the high stability of the proposed system in multiple catalytic cycles without leaching metal ions, which makes our approach especially promising for heterogeneous asymmetric photocatalysis.

3.
Talanta ; 208: 120480, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816790

RESUMO

Functional plasmonic fiber for detection and on-line monitoring of organophosphorus pesticides in water or model soil samples is described. The appearance of the plasmon absorption band was realized through the deposition of a thin gold layer on the naked core of multimode optical fiber. The metalorganic frameworks (MOF-5) layer was deposited on the gold surface for the introduction of a high affinity towards the target pesticides. The MOF-5 layer affords the extraction of pesticides and their concentration primarily in the "plasmon evanescent wave" space, allowing the detection by the shift of plasmon absorption band. The growth of MOF-5 layer was confirmed using the Raman, XPS and XRD measurements. The entrapping of pesticides was checked using the Raman spectroscopy and ellipsometry, which also indicate the corresponding changes of MOF-5 refractive index. The series of further experiments demonstrate the applicability of proposed fiber sensor for detection of pesticides in soil without the false signals from surrounding media. The main advantages of proposed sensor can be attributed to simplicity, high sensitivity, low cost and the absence of organic solvents for the probe treatment.

4.
Anal Chim Acta ; 1068: 70-79, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31072479

RESUMO

In this work, we proposed the functionalization of a surface plasmon-polariton (SPP)-supported gold grating surface with the metal-organic framework (MOF-5) for sensitive, selective and reproducible surface-enhanced Raman scattering (SERS) detection of organophosphorus pesticides. Homogeneous distribution of plasmon intensity along the Au grating surface ensures the high reproducibility of SERS results (deviation of Raman peak intensity does not exceed the 4% along the sample). The surface-assisted growth of thin MOF-5 film was accomplished in two steps procedure: (i) covalent grafting by 4-carboxyphenyl groups and (ii) the immersion of samples in the mother liquid of MOF-5. Proposed SERS chip proved itself to be a perfect analytical probe for the detection of organophosphorus pesticides with high reliability and low detection limit up to 10-12 M. Moreover, selective detection and recognition of several relevant organic contaminants (azo-dye, mycotoxin, and pesticide) from the simulated soil was successfully demonstrated. All SERS measurements were performed using portable Raman spectrometer and can easily be expanded to environmental conditions. Our work combines the high affinity of organic contaminants to the MOF-5 with excellent plasmonic excitation on the surface plasmon-polariton supported structure and shows the way to the realization of closed-to-ideal analytical SERS chip.

5.
Biosens Bioelectron ; 145: 111718, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31561094

RESUMO

Taking advantage of surface-enhanced Raman scattering (SERS) methodology with its unique ability to collect abundant intrinsic fingerprint information and noninvasive data acquisition we set up a SERS-based approach for recognition of physically induced DNA damage with further incorporation of artificial neural network (ANN). As a proof-of-concept application, we used the DNA molecules, where the one oligonucleotide (OND) was grafted to the plasmonic surface while complimentary OND was exposed to UV illumination with various exposure doses and further hybridized with the grafted counterpart. All SERS spectra of entrapped DNA were collected by several operators using the portable spectrometer, without any optimization of measurements procedure (e.g., optimization of acquisition time, laser intensity, finding of optimal place on substrate, manual baseline correction, etc.) which usually takes a significant amount of operator's time. The SERS spectra were employed as input data for ANN training, and the performance of the system was verified by predicting the class labels for SERS validation data, using a spectra dataset, which has not been involved in the training process. During that phase, accuracy higher than 98% was achieved with a level of confidence exceeding 95%. It should be noted that utilization of the proposed functional-SERS/ANN approach allows identifying even the minor DNA damage, almost invisible by control measurements, performed with common analytical procedures. Moreover, we introduce the advanced ANN design, which allows not only classifying the samples but also providing the ANN analysis feedback, which associates the spectral changes and chemical transformations of DNA structure.


Assuntos
Técnicas Biossensoriais , Dano ao DNA , DNA/isolamento & purificação , Análise Espectral Raman , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Redes Neurais de Computação , Oligonucleotídeos/química
6.
RSC Adv ; 8(20): 11198-11206, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541520

RESUMO

One of the biggest challenges in the field of organic electronics is the creation of flexible, stretchable, and biofavorable materials. Here the simple and repeatable method for reversible writing/erasing of arbitrary conductive pattern in conductive polymer thin film is proposed. The copolymer azo-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was synthesized to achieve reversible photo-induced local electrical switching in the insulator-semimetal range. The photoisomerization of the polymer was induced by grafting nitrobenzenediazonium tosylate to the PSS main chains. While the as-deposited PEDOT:PSS thin films showed good conductivity, the modification procedure generated polymer redistribution, resulting in an island-like PEDOT distribution and the loss of conductivity. Further local illumination (430 nm) led to the azo-isomerization redistribution of the polymer chains and the creation of a conductive pattern in the insulating polymer film. The created pattern could then be erased by illumination at a second wavelength (470 nm), which was attributed to induction of reverse azo-isomerization. In this way, the reversible writing/erasing of arbitrary conductive patterns in thin polymer films was realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA