Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Org Biomol Chem ; 15(19): 4096-4114, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28352916

RESUMO

The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain ß-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítio Alostérico , Interações Hidrofóbicas e Hidrofílicas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Treonina , Motivos de Aminoácidos , Ligantes , Modelos Moleculares , Ligação Proteica
2.
J Chem Phys ; 139(6): 065101, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23947891

RESUMO

We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Células Sanguíneas/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Cobaias , Haplorrinos , Humanos , Membranas Artificiais , Coelhos
3.
J Chem Inf Model ; 51(6): 1393-404, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21539396

RESUMO

Compounds that modulate microtubule dynamics include highly effective anticancer drugs, leading to continuing efforts to identify new agents and improve the activity of established ones. Here, we demonstrate that [(3)H]-labeled halichondrin B (HB), a complex, sponge-derived natural product, is bound to and dissociated from tubulin rapidly at one binding site per αß-heterodimer, with an apparent K(d) of 0.31 µM. We found no HB-induced aggregation of tubulin by high-performance liquid chromatography, even following column equilibration with HB. Binding of [(3)H]HB was competitively inhibited by a newly approved clinical agent, the truncated HB analogue eribulin (apparent K(i), 0.80 µM) and noncompetitively by dolastatin 10 and vincristine (apparent K(i)'s, 0.35 and 5.4 µM, respectively). Our earlier studies demonstrated that HB inhibits nucleotide exchange on ß-tubulin, and this, together with the results presented here, indicated the HB site is located on ß-tubulin. Using molecular dynamics simulations, we determined complementary conformations of HB and ß-tubulin that delineated in atomic detail binding interactions of HB with only ß-tubulin, with no involvement of the α-subunit in the binding interaction. Moreover, the HB model served as a template for an eribulin binding model that furthered our understanding of the properties of eribulin as a drug. Overall, these results established a mechanistic basis for the antimitotic activity of the halichondrin class of compounds.


Assuntos
Antimitóticos/metabolismo , Éteres Cíclicos/metabolismo , Furanos/metabolismo , Cetonas/metabolismo , Modelos Moleculares , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação , Bovinos , Macrolídeos , Simulação de Dinâmica Molecular , Poríferos , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Tubulina (Proteína)/química
4.
J Chem Inf Model ; 50(11): 2019-28, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21028850

RESUMO

We used synthetic peloruside A for the commercial preparation of [³H]peloruside A. The radiolabeled compound bound to preformed tubulin polymer in amounts stoichiometric with the polymer's tubulin content, with an apparent K(d) value of 0.35 µM. A less active peloruside A analogue, (11-R)-peloruside A and laulimalide acted as competitive inhibitors of the binding of the [³H]peloruside A, with apparent K(i) values of 9.3 and 0.25 µM, respectively. Paclitaxel, epothilone B, and discodermolide had essentially no ability to inhibit [³H]peloruside A binding, confirming that these compounds bind to a different site on tubulin polymer. We modeled both laulimalide and peloruside A into the binding site on ß-tubulin that was identified by Huzil et al. (J. Mol. Biol. 2008, 378, 1016-1030), but our model provides a more reasonable structural basis for the protein-ligand interaction. There is a more complete desolvation of the peloruside A ligand and a greater array of favorable hydrophobic and electrostatic interactions exhibited by peloruside A at its ß-tubulin binding site. In addition, the protein architecture in our peloruside A binding model was suitable for binding laulimalide. With the generation of both laulimalide and peloruside A binding models, it was possible to delineate the structural basis for the greater activity of laulimalide relative to peloruside A and to rationalize the known structure-activity relationship data for both compounds.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Lactonas/farmacologia , Macrolídeos/farmacologia , Modelos Moleculares , Multimerização Proteica/efeitos dos fármacos , Trítio/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Bovinos , Lactonas/química , Lactonas/metabolismo , Macrolídeos/química , Macrolídeos/metabolismo , Estrutura Quaternária de Proteína , Estereoisomerismo
5.
Structure ; 16(10): 1588-97, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18940613

RESUMO

Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the "proton shuttle" E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteína 25 Associada a Sinaptossoma/química , Sequência de Aminoácidos , Sítios de Ligação , Biomimética , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Proteína 25 Associada a Sinaptossoma/metabolismo
6.
Antimicrob Agents Chemother ; 53(10): 4283-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19635954

RESUMO

Given the limited number of structural classes of clinically available antimicrobial drugs, the discovery of antibacterials with novel chemical scaffolds is an important strategy in the development of effective therapeutics for both naturally occurring and engineered resistant strains of pathogenic bacteria. In this study, several diarylamidine derivatives were evaluated for their ability to protect macrophages from cell death following infection with Bacillus anthracis, a gram-positive spore-forming bacterium. Four bis-(imidazolinylindole) compounds were identified with potent antibacterial activity as measured by the protection of macrophages and by the inhibition of bacterial growth in vitro. These compounds were effective against a broad range of gram-positive and gram-negative bacterial species, including several antibiotic-resistant strains. Minor structural variations among the four compounds correlated with differences in their effects on bacterial macromolecular synthesis and mechanisms of resistance. In vivo studies revealed protection by two of the compounds of mice lethally infected with B. anthracis, Staphylococcus aureus, or Yersinia pestis. Taken together, these results indicate that the bis-(imidazolinylindole) compounds represent a new chemotype for the development of therapeutics for both gram-positive and gram-negative bacterial species as well as against antibiotic-resistant infections.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Animais , Antibacterianos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Yersinia pestis/efeitos dos fármacos
7.
Arch Biochem Biophys ; 484(1): 55-62, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19161972

RESUMO

GDP inhibits paclitaxel-induced tubulin assembly without GTP when the tubulin bears GDP in the exchangeable site (E-site). Initially, we thought inhibition was mediated through the E-site, since small amounts of GTP or Mg(2+), which favors GTP binding to the E-site, reduced inhibition by GDP. We thought trace GTP released from the nonexchangeable site (N-site) by tubulin denaturation was required for polymer nucleation, but microtubule length was unaffected by GDP. Further, enhancing polymer nucleation reduced inhibition by GDP. Other mechanisms involving the E-site were eliminated experimentally. Upon finding that ATP weakly inhibited paclitaxel-induced assembly, we concluded that another ligand binding site was responsible for these inhibitory effects, and we found that GDP was not binding at the taxoid, colchicine, or vinca sites. There may therefore be a lower affinity site on tubulin to which GDP can bind distinct from the E- and N-sites, possibly on alpha-tubulin, based on molecular modeling studies.


Assuntos
Guanosina Difosfato/farmacologia , Guanosina Trifosfato/farmacologia , Paclitaxel/antagonistas & inibidores , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Paclitaxel/metabolismo , Espectrofotometria Atômica , Tubulina (Proteína)/química
8.
Nat Struct Mol Biol ; 11(1): 67-72, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14718925

RESUMO

The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.


Assuntos
Antígenos de Bactérias , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/antagonistas & inibidores , Animais , Antraz/tratamento farmacológico , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Cinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
9.
Mol Cancer Ther ; 18(10): 1765-1774, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31341033

RESUMO

The preclinical antitumor agent RITA (2,5-bis[5-hydroxymethyl-2-thienyl] furan, NSC 652287), an analog of the natural product α-terthiophene, failed during the development phase due to acute pulmonary toxicity in animal models. A series of synthetic modifications to RITA's heterocyclic scaffold resulted in activity ranging from broadly cytotoxic to highly selective. In the NCI 60-cell line screen, these "hyperselective" agents (e.g., imatinib) are rare. A selectivity index (SI) was developed to quantify this desirable feature, which is 20 for imatinib, whereas RITA's SI is only 0.10. One of the described hyperselective RITA analogs (SI = 7.9) completely lost activity in the presence of a known SULT1A1 inhibitor. These results, coupled with previous evidence that RITA is a SULT1A1 substrate, suggest that carbinol modification by a sulfate leaving group and subsequent formation of a reactive carbocation may explain RITA's broad cytotoxicity. Although SULT1A1 expression is required for susceptibility, hyperselective analogs exhibited reduced association of activity with SULT1A1 mRNA expression compared with RITA, apparently requiring some additional target(s). In support of this hypothesis, there is a strong correlation (P < 0.01, r = 0.95) between quantum mechanically calculated energy barriers for carbocation formation from sulfonated analogs and SI, indicating that hyperselective RITA analogs generate reactive carbocations less readily after sulfate activation. Importantly, narrowing the cytotoxicity profile of RITA did not eliminate its analogs' in vivo antitumor activity, as several new hyperselective agents, NSC 773097 (1), 773392 (2), and 782846 (6), displayed impressive activity against A498 xenografts in mice.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Animais , Antineoplásicos/química , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Furanos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus
10.
Biophys J ; 95(3): 1157-64, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18645196

RESUMO

Nonelectrolyte polymers of poly(ethylene glycol) (PEG) were used to estimate the diameter of the ion channel formed by the Bacillus anthracis protective antigen 63 (PA(63)). Based on the ability of different molecular weight PEGs to partition into the pore and reduce channel conductance, the pore appears to be narrower than the one formed by Staphylococcus aureus alpha-hemolysin. Numerical integration of the PEG sample mass spectra and the channel conductance data were used to refine the estimate of the pore's PEG molecular mass cutoff (approximately 1400 g/mol). The results suggest that the limiting diameter of the PA(63) pore is <2 nm, which is consistent with an all-atom model of the PA(63) channel and previous experiments using large ions.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/ultraestrutura , Bacillus anthracis/química , Toxinas Bacterianas/química , Modelos Químicos , Modelos Moleculares , Polietilenoglicóis/química , Simulação por Computador , Eletrólitos/química , Porosidade , Conformação Proteica
11.
Chem Biol ; 14(3): 245-55, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17379140

RESUMO

Anthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity. Interestingly, the compounds activated MAPK-signaling molecules, induced proinflammatory cytokine production, and inhibited LT-induced macrophage apoptosis in a concentration-dependent manner. We propose that induction of antiapoptotic responses by MAPK-dependent or -independent pathways and activation of host innate responses may protect macrophages from anthrax LT-induced cell death. Altering host responses through a chemical genetics approach can help identify critical cellular pathways involved in the pathogenesis of anthrax and can be exploited to further explore host-pathogen interactions.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Testes Genéticos/métodos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Microscopia Confocal , Necrose , Fosfatases cdc25/antagonistas & inibidores
12.
Eur J Med Chem ; 159: 74-89, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30268825

RESUMO

Small molecules that target microtubules (MTs) represent promising therapeutics to treat certain types of cancer, including glioblastoma multiform (GBM). We synthesized modified carbazoles and evaluated their antitumor activity in GBM cells in culture. Modified carbazoles with an ethyl moiety linked to the nitrogen of the carbazole and a carbonyl moiety linked to distinct biaromatic rings exhibited remarkably different killing activities in human GBM cell lines and patient-derived GBM cells, with IC50 values from 67 to >10,000 nM. Measures of the activity of modified carbazoles with tubulin and microtubules coupled to molecular docking studies show that these compounds bind to the colchicine site of tubulin in a unique low interaction space that inhibits tubulin assembly. The modified carbazoles reported here represent novel chemical tools to better understand how small molecules disrupt MT functions and kill devastating cancers such as GBM.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Glioblastoma/tratamento farmacológico , Microtúbulos/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Carbazóis/síntese química , Carbazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
13.
J Med Chem ; 50(9): 2127-36, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17417831

RESUMO

We previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome. Thus, this structural class of small molecules may serve as dual-function BoNT/A inhibitors. In this study, we used a refined pharmacophore for BoNT/A LC inhibition to identify four new, potent inhibitors of this structural class (IC50's ranged from 3.2 to 17 muM). Molecular docking indicated that the binding modes for the new SMNPIs are consistent with those of other inhibitors that we have identified, further supporting our structure-based pharmacophore. Finally, structural motifs of the new SMNPIs, as well as two structure-based derivatives, were examined for activity, providing valuable information about pharmacophore component contributions to inhibition.


Assuntos
Aminoquinolinas/síntese química , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Metaloproteases/antagonistas & inibidores , Metaloproteases/química , Modelos Moleculares , Aminoquinolinas/química , Sítios de Ligação , Ligação Proteica , Relação Estrutura-Atividade
14.
J Med Chem ; 48(19): 6107-16, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16162011

RESUMO

Modulating the structure and function of tubulin and microtubules is an important route to anticancer therapeutics, and therefore, small molecules that bind to tubulin and cause mitotic arrest are of immense interest. A large number of synthetic and natural compounds with diverse structures have been shown to bind at the colchicine site, one of the major binding sites on tubulin, and inhibit tubulin assembly. Using the recently determined X-ray structure of the tubulin:colchicinoid complex as the template, we employed docking studies to determine the binding modes of a set of structurally diverse colchicine site inhibitors. These binding models were subsequently used to construct a comprehensive, structure-based pharmacophore that in combination with molecular dynamics simulations confirms and extends our understanding of binding interactions at the colchicine site.


Assuntos
Colchicina/química , Modelos Moleculares , Moduladores de Tubulina , Tubulina (Proteína)/química , 2-Metoxiestradiol , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Aminofenóis/química , Sítios de Ligação , Chalcona/química , Ciclopropanos/química , Estradiol/análogos & derivados , Estradiol/química , Indanos/química , Lignanas/química , Estrutura Molecular , Nocodazol/química , Podofilotoxina/química , Ligação Proteica , Estilbenos/química , Relação Estrutura-Atividade , Sulfonamidas/química , Tiazóis/química
15.
J Biomol Struct Dyn ; 22(5): 493-502, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15702922

RESUMO

We describe a refined homology model of a CDK1/cyclin B complex that was previously used for the structure-based optimization of the Paullone class of inhibitors. The preliminary model was formed from the homologous regions of the deposited CDK2/cyclin A crystal structure. Further refinement of the CDK1/cyclin B complex was accomplished using molecular mechanics and hydropathic analysis with a protocol of constraints and local geometry searches. For the most part, our CKD1/cyclin B homology model is very similar to the high resolution CDK2/cyclin A crystal structure regarding secondary and tertiary features. However, minor discrepancies between the two kinase structures suggest the possibility that ligand design may be specifically tuned for either CDK1 or CDK2. Our examination of the CDK1/cyclin B model includes a comparison with the CDK2/cyclin A crystal structure in the PSTAIRE interface region, connecting portions to the ATP binding domain, as well as the ATP binding site itself.


Assuntos
Proteína Quinase CDC2/química , Ciclina B/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estrelas-do-Mar/enzimologia , Homologia Estrutural de Proteína
16.
Eur J Med Chem ; 40(7): 655-61, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15935900

RESUMO

The introduction of side chains bearing epoxide motifs into the molecular scaffold of kenpaullone and 9-trifluoromethylpaullone led to improved antiproliferative activity of the novel derivatives for human tumor cell lines. The syntheses were accomplished applying Stille coupling for the introduction of unsaturated side chains into the 2-position of the paullones and subsequently employing a hydrogen peroxide/nitrile mixture for the epoxidation of C,C-double bonds.


Assuntos
Antineoplásicos/síntese química , Benzazepinas/síntese química , Compostos de Epóxi/síntese química , Indóis/síntese química , Antineoplásicos/farmacologia , Benzazepinas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/farmacologia , Humanos , Indóis/farmacologia , Relação Estrutura-Atividade
17.
PLoS One ; 10(6): e0129264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061731

RESUMO

There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.


Assuntos
Toxinas Botulínicas/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neurônios Motores/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Toxinas Botulínicas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteínas SNARE/metabolismo
18.
Neurotox Res ; 27(4): 384-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25782580

RESUMO

Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.


Assuntos
Toxinas Botulínicas/toxicidade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Células-Tronco Embrionárias/citologia , Humanos , Proteólise/efeitos dos fármacos , Sorogrupo
19.
J Med Chem ; 47(1): 22-36, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14695817

RESUMO

With a view to the rational design of selective GSK-3beta inhibitors, 3D-QSAR CoMSIA models were developed for the inhibition of the three serine/threonine kinases CDK1/cyclin B, CDK5/p25, and GSK-3beta by compounds from the paullone inhibitor family. The models are based on the kinase inhibition data of 52 paullone entities, which were aligned by a docking routine into the ATP-binding cleft of a CDK1/cyclin B homology model. Variation of grid spacing and column filtering were used during the optimization of the models. The predictive ability of the models was shown by a leave-one-out cross-validation and the prediction of an independent set of test compounds, which were synthesized especially for this purpose. Besides paullones with the basic indolo[3,2-d][1]benzazepine core, the test set comprised novel thieno[3',2':2,3]azepino[4,5-b]indoles, pyrido[2',3':2,3]azepino[4,5-b]indoles, and a pyrido[3',2':4,5]pyrrolo[3,2-d][1]benzazepine. The best statistical values for the CoMSIA were obtained for the CDK1-models (r(2)() = 0.929 and q(2)() = 0.699), which were clearly superior to the models for CDK5 (r(2)() = 0.874 and q(2)() = 0.652) and GSK-3 (r(2)() = 0.871 and q(2)() = 0.554).


Assuntos
Benzazepinas/síntese química , Proteína Quinase CDC2/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Indóis/síntese química , Animais , Benzazepinas/química , Proteína Quinase CDC2/química , Quinase 3 Dependente de Ciclina , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/química , Indóis/química , Modelos Moleculares , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
20.
Org Lett ; 16(7): 2034-7, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24641272

RESUMO

Two complementary approaches for the preparation of linked 5-membered heterocycles were developed. The Pd-catalyzed Suzuki-Miyaura cross-coupling with halogenated furan, thiophene, and selenophene led to higher overall yields, but C,H-bond activation was a more efficient strategy for the coupling at C(2) of oxazoles. Potency and selectivity of the final hydroxymethyl products in renal (A498), lung (NCI-H226), kidney (CAKI-1), and breast (MDA-MB-468, MCF7) carcinoma cell lines were determined.


Assuntos
Antineoplásicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Paládio/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Ácidos Borônicos/química , Catálise , Química Orgânica/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/química , Compostos Heterocíclicos/toxicidade , Humanos , Estrutura Molecular , Oxazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA