Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Vet Res ; 54(1): 61, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464437

RESUMO

Neutrophils constitute an essential component of the innate immune response, readily killing most bacteria through phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs) among other mechanisms. These cells play an unclear role in mycobacterial infections such as Mycobacterium avium subspecies paratuberculosis (Map), the etiological agent of paratuberculosis, and its response is particularly understudied in ruminants. Herein, a wide set of techniques were adapted, or newly developed, to study the in vitro response of caprine neutrophils after Map infection. Immunofluorescence was used to demonstrate, simultaneously, chemotaxis, phagocytosis, degranulation, and NETs. The quantification of neutrophil phagocytic activity against Map at a 1:10 multiplicity of infection (MOI), through flow cytometry, showed values that varied from 4.54 to 5.63% of phagocyting neutrophils. By immunofluorescence, a 73.3 ± 14.5% of the fields showed NETs, and the mean release of DNA, attributable to NETosis, calculated through a fluorometric method, was 16.2 ± 3.5%. In addition, the RNA expression of TGF-ß, TNF and IL-1ß cytokines, measured through reverse transcription qPCR, was significantly higher in the two latter. Overall, neutrophil response was proportional to the number of bacteria. This work confirms that the simultaneous study of several neutrophil mechanisms, and the combination of different methodologies, are essential to reach a comprehensive understanding of neutrophil response against pathogens, demonstrates that, in vitro, caprine neutrophils display a strong innate response against Map, using their entire repertoire of effector functions, and sets the basis for further in vitro and in vivo studies on the role of neutrophils in paratuberculosis.


Assuntos
Doenças das Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Neutrófilos , Paratuberculose/microbiologia , Cabras , Imunidade Inata
2.
Vet Res ; 54(1): 105, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953317

RESUMO

Fasciola hepatica causes liver fluke disease, a worldwide neglected and re-emerging zoonotic disease, leading to hepatitis in humans and livestock. In the pathogenesis, flukes actively migrate through liver parenchyma provoking tissue damage. Here, parasites must confront leukocytes of the innate immune system in vivo. Polymorphonuclear neutrophils (PMN) are the most abundant granulocytes and first ones arriving at infection sites. PMN may display neutrophil extracellular traps (NETs), consisting of nuclear DNA, decorated with histones, enzymes, and antimicrobial peptides. We investigated for the first time whether F. hepatica soluble antigens (FhAg) can also trigger NETosis and innate immune reactions in exposed ovine PMN. Thus, isolated PMN were co-cultured with FhAg and NET formation was visualized by immunofluorescence and scanning electron microscopy analyses resulting in various phenotypes with spread NETs being the most detected in vitro. In line, NETs quantification via Picogreen®-fluorometric measurements revealed induction of anchored- and cell free NETs phenotypes. Live cell 3D-holotomographic microscopy revealed degranulation of stimulated PMN at 30 min exposure to FhAg. Functional PMN chemotaxis assays showed a significant increase of PMN migration (p = 0.010) and intracellular ROS production significantly increased throughout time (p = 0.028). Contrary, metabolic activities profiles of FhAg-exposed PMN did not significantly increase. Finally, in vivo histopathological analysis on F. hepatica-parasitized liver tissue sections of sheep showed multifocal infiltration of inflammatory cells within liver parenchyma, and further fluorescence microscopy analyses confirmed NETs formation in vivo. Overall, we hypothesized that NET-formation is a relevant host defence mechanism that might have a role in the pathogenesis of fasciolosis in vivo.


Assuntos
Armadilhas Extracelulares , Fasciola hepatica , Humanos , Animais , Ovinos , Neutrófilos , Imunidade Inata , Armadilhas Extracelulares/metabolismo , Técnicas de Cocultura/veterinária
3.
Vet Res ; 52(1): 69, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980310

RESUMO

Paratuberculosis is a disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map). Vaccination is the most cost-effective control method. However, despite the fact that macrophages are the main target cells for this pathogen, the precise mechanisms behind the response of the macrophage to Map infection and how it is modified by vaccination are yet poorly understood. The aim of this study was to investigate the effect of Silirum® vaccination in the early immune response of caprine monocyte-derived macrophages (CaMØs). Peripheral blood mononuclear cells (PBMCs) were obtained from vaccinated and non-vaccinated goats, cultured in vitro until differentiation to macrophages and infected with Map. After a 24 h incubation, Map viability and DNA were assessed in culture by viable colony count and real time quantitative polymerase chain reaction (qPCR). In addition, Map phagocytosis and expression of IL-10, IL-12, IFN-γ, TNF-α, IL-17A, IL-1ß, iNOS, IL-6 and MIP-1ß were also evaluated through immunofluorescence labelling and reverse transcriptase qPCR (RT-qPCR), respectively. A significant reduction of Map viability was observed in both supernatants (P < 0.05) and CaMØs (P < 0.001) from the vaccinated group. Similarly, the percentage of infected CaMØs and the number of internalized Map by CaMØs (P < 0.0001) was higher in the vaccinated group. Finally, iNOS (P < 0.01) and IL-10 were significantly up-regulated in CaMØs from vaccinated goats, whereas only MIP-1ß was up-regulated in non-vaccinated animals (P < 0.05). These results show that vaccination modifies the immune response of CaMØs, suggesting that the phagocytosis and microbiocidal activity of macrophages against Map is enhanced after vaccination.


Assuntos
Vacinas Bacterianas/administração & dosagem , Doenças das Cabras/imunologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Vacinação/veterinária , Animais , Doenças das Cabras/microbiologia , Cabras , Paratuberculose/microbiologia
4.
Vet Res ; 52(1): 106, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294155

RESUMO

Breeding bulls infected with Besnoitia besnoiti may develop sterility during either acute or chronic infection. The aim of this study was to investigate the molecular pathogenesis of B. besnoiti infection with prognosis value in bull sterility. Accordingly, five well-characterized groups of naturally and experimentally infected males were selected for the study based on clinical signs and lesions compatible with B. besnoiti infection, serological results and parasite detection. A broad panel of molecular markers representative of endothelial activation and fibrosis was investigated and complemented with a histopathological approach that included conventional histology and immunohistochemistry. The results indicated the predominance of an intense inflammatory infiltrate composed mainly of resident and recruited circulating macrophages and to a lesser extent of CD3+ cells in infected bulls. In addition, a few biomarkers were associated with acute, chronic or subclinical bovine besnoitiosis. The testicular parenchyma showed a higher number of differentially expressed genes in natural infections (acute and chronic infections) versus scrotal skin in experimental infections (subclinical infection). In subclinical infections, most genes were downregulated except for the CCL24 and CXCL2 genes, which were upregulated. In contrast, the acute phase was mainly characterized by the upregulation of IL-1α, IL-6 and TIMP1, whereas in the chronic phase, the upregulation of ICAM and the downregulation of MMP13, PLAT and IL-1α were the most relevant findings. Macrophages could be responsible for the highest level of gene regulation in the testicular parenchyma of severely affected and sterile bulls, and all these genes could be prognostic markers of sterility.


Assuntos
Doenças dos Bovinos/fisiopatologia , Coccidiose/veterinária , Progressão da Doença , Sarcocystidae/isolamento & purificação , Doenças Testiculares/veterinária , Testículo/fisiopatologia , Animais , Biomarcadores/análise , Bovinos , Coccidiose/fisiopatologia , Masculino , Doenças Testiculares/fisiopatologia
5.
Vet Res ; 51(1): 83, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552750

RESUMO

Neospora caninum is an apicomplexan cyst-forming parasite that is considered one of the main causes of abortion. The pathogenic mechanisms associated with parasite virulence at the maternal-foetal interface that are responsible for the outcome of infection are largely unknown. Here, utilizing placentomes from cattle experimentally infected with high-virulence (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates, we studied key elements of the innate and adaptive immune responses, as well as components of the extracellular matrix (ECM), at 10 and 20 days post-infection (dpi). The low-virulence isolate elicited a robust immune response characterized by upregulation of genes involved in pathogen recognition, chemokines and pro-inflammatory cytokines, crucial for its adequate control. In addition, Nc-Spain1H triggered the expression of anti-inflammatory cytokines and other mechanisms implicated in the maintenance of ECM integrity to ensure foetal survival. In contrast, local immune responses were initially (10 dpi) impaired by Nc-Spain7, allowing parasite multiplication. Subsequently (20 dpi), a predominantly pro-inflammatory Th1-based response and an increase in leucocyte infiltration were observed. Moreover, Nc-Spain7-infected placentomes from animals carrying non-viable foetuses exhibited higher expression of the IL-8, TNF-α, iNOS and SERP-1 genes and lower expression of the metalloproteases and their inhibitors than Nc-Spain7-infected placentomes from animals carrying viable foetuses. In addition, profound placental damage characterized by an alteration in the ECM organization in necrotic foci, which could contribute to foetal death, was found. Two different host-parasite interaction patterns were observed at the bovine placenta as representative examples of different evolutionary strategies used by this parasite for transmission to offspring.


Assuntos
Imunidade Adaptativa , Doenças dos Bovinos/imunologia , Coccidiose/veterinária , Matriz Extracelular/imunologia , Interações Hospedeiro-Parasita , Imunidade Inata , Neospora/fisiologia , Animais , Bovinos , Coccidiose/imunologia , Feminino , Placenta/imunologia , Gravidez
6.
Vet Pathol ; 57(4): 535-544, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32406321

RESUMO

There is an unacknowledged clinical presentation of ovine toxoplasmosis characterized by early abortions and lesions of fetal leukoencephalomalacia. To investigate the pathogenesis of this condition, the extent and distribution of leukomalacia and the variations in the cell populations associated with it were characterized in 32 fetal brains from 2 previously published experimental studies of Toxoplasma gondii infection in pregnant sheep. Immunohistochemical labeling of ßAPP allowed for the detection of leukomalacia in 100/110 (91%) studied samples. There was no clear influence of the challenge dose or the area of the brain (frontal lobe, corpus callosum, midbrain, and cerebellum). In tissues with leukomalacia, there was loss of oligodendrocytes and increased number of astrocytes and microglia both in the areas of necrosis but also in the surrounding area. These findings were similar to those described in ovine experimental models (inflammation syndrome and hypoxic models) of periventricular leukomalacia in humans. Thus, a fetal inflammatory syndrome may be involved in the pathogenesis of early abortion in ovine toxoplasmosis. However, further studies are needed to determine the pathogenesis of this clinical presentation because placental thrombosis and resulting hypoxia could also be responsible for the leukomalacia.


Assuntos
Aborto Animal/patologia , Encéfalo/patologia , Feto/patologia , Doenças dos Ovinos/patologia , Toxoplasmose Animal/patologia , Aborto Animal/parasitologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/patologia , Feminino , Imuno-Histoquímica/veterinária , Leucoencefalopatias/veterinária , Microglia/patologia , Necrose/patologia , Necrose/veterinária , Gravidez , Ovinos , Toxoplasma/patogenicidade
8.
Vet Res ; 50(1): 72, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551079

RESUMO

Early Neospora caninum infection dynamics were investigated in pregnant heifers intravenously inoculated with PBS (G-Control) or 107 tachyzoites of high (G-NcSpain7)- or low (G-NcSpain1H)-virulence isolates at 110 days of gestation. Serial culling at 10 and 20 days post-infection (dpi) was performed. Fever was detected at 1 dpi in both infected groups (P < 0.0001), and a second peak was detected at 3 dpi only in G-NcSpain7 (P < 0.0001). At 10 dpi, Nc-Spain7 was detected in placental samples from one animal related to focal necrosis, and Nc-Spain7 transmission was observed, although no foetal lesions were associated with this finding. The presence of Nc-Spain1H in the placenta or foetuses, as well as lesions, were not detected at 10 dpi. At 20 dpi, G-NcSpain7 animals showed almost 100% positive placental tissues and severe focal necrosis as well as 100% transmission. Remarkably, foetal mortality was detected in two G-NcSpain7 heifers. Only one animal from G-NcSpain1H presented positive placental samples. No foetal mortality was detected, and lesions and parasite transmission to the foetus were not observed in this group. Finally, 100% of G-NcSpain7 heifers at 20 dpi presented specific antibodies, while only 60% of G-NcSpain1H animals presented specific antibodies at 20 dpi. In addition, earlier seroconversion in G-Nc-Spain7 was observed. In conclusion, tachyzoites from Nc-Spain7 reached the placenta earlier and multiplied, leading to lesion development, transmission to the foetus and foetal mortality, whereas Nc-Spain1H showed delayed infection of the placenta and no lesional development or transmission during early infection.


Assuntos
Doenças dos Bovinos/imunologia , Coccidiose/veterinária , Feto/parasitologia , Neospora/patogenicidade , Placenta/parasitologia , Complicações Parasitárias na Gravidez/veterinária , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Feminino , Idade Gestacional , Neospora/fisiologia , Gravidez , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/parasitologia , Vacinação/veterinária , Virulência/genética
9.
Vet Res ; 49(1): 106, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333061

RESUMO

Endogenous transplacental transmission, which occurs during pregnancy as the result of reactivation of a latent infection in the dam, is the main mechanism of propagation of Neospora caninum within cattle herds. However, the importance of this propagation mechanism has not yet been evaluated in relation to ovine neosporosis. In this study, involving three generations of ewes naturally infected by N. caninum, we demonstrated that endogenous transplacental transmission may also be highly efficient in the ovine host since transmission of infection occurred in 96.6% of gestations and the congenital infection rate ranged between 66.7 and 93%. Nevertheless, parasite burdens decreased gradually in consecutive generations. Reactivation of latent infections had a strong impact on the pregnancy outcome, with high mortality rates recorded in the offspring of the two first generations of ewes (21.4-46.1%). Histological examination of the brain revealed that all aborted foetuses had characteristic lesions of neosporosis (necrotic glial foci) and a few parasite cysts, whereas most stillborn and newborn lambs that died shortly after birth had non-specific lesions (mild glial foci without necrosis) and parasite cysts were more frequent. Microsatellite analysis revealed scarce genetic variability in the N. caninum population, in accordance with a scenario in which infections were of a single origin and were exclusively maintained by clonal propagation through endogenous transplacental transmission.


Assuntos
Coccidiose/veterinária , Transmissão Vertical de Doenças Infecciosas/veterinária , Neospora , Complicações Parasitárias na Gravidez/veterinária , Doenças dos Ovinos/parasitologia , Animais , Anticorpos Antiprotozoários/sangue , Feminino , Imunoglobulina G/sangue , Placenta , Gravidez , Ovinos
10.
BMC Vet Res ; 13(1): 128, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490374

RESUMO

BACKGROUND: Equine besnoitiosis, caused by Besnoitia bennetti, and equine protozoal myeloencephalitis (EPM), caused by Sarcocystis neurona and Neospora hughesi are relevant equine diseases in the Americas that have been scarcely studied in Europe. Thus, a serosurvey of these cystogenic coccidia was carried out in Southern Spain. A cross-sectional study was performed and serum samples from horses (n = 553), donkeys (n = 85) and mules (n = 83) were included. An in-house enzyme-linked immunosorbent assay (ELISA) was employed to identify a Besnoitia spp. infection and positive results were confirmed by an a posteriori western blot. For Neospora spp. and Sarcocystis spp., infections were detected using in-house ELISAs based on the parasite surface antigens N. hughesi rNhSAG1 and S. neurona rSnSAG2/3/4. Risk factors associated with these protozoan infections were also investigated. RESULTS: Antibodies against Besnoitia spp., Neospora spp. and Sarcocystis spp. infections were detected in 51 (7.1%), 46 (6.4%) and 20 (2.8%) of 721 equids, respectively. The principal risk factors associated with a higher seroprevalence of Besnoitia spp. were the host species (mule or donkey), the absence of shelter and the absence of a rodent control programme. The presence of rodents was the only risk factor for Neospora spp. infection. CONCLUSIONS: This study was the first extensive serosurvey of Besnoitia spp. infection in European equids accomplished by two complementary tests and gives evidence of the presence of specific antibodies in these populations. However, the origin of the infection is still unclear. Further parasite detection and molecular genotyping are needed to identify the causative Besnoitia and Neospora species. Finally, cross-reactions with antibodies directed against other species of Sarcocystis might explain the positive reactions against the S. neurona antigens.


Assuntos
Anticorpos Antiprotozoários/sangue , Coccídios , Coccidiose/veterinária , Doenças dos Cavalos/parasitologia , Sarcocystidae , Animais , Coccídios/imunologia , Coccídios/isolamento & purificação , Coccidiose/sangue , Coccidiose/imunologia , Estudos Transversais , Feminino , Doenças dos Cavalos/sangue , Doenças dos Cavalos/imunologia , Cavalos , Masculino , Neospora , Sarcocystidae/imunologia , Sarcocystidae/isolamento & purificação , Sarcocystis , Estudos Soroepidemiológicos , Espanha
11.
Parasitol Res ; 116(1): 445-448, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27815735

RESUMO

Besnoitia besnoiti and B. caprae, which infect bovids (cattle and antelopes) and goats, respectively, are responsible for besnoitiosis, a chronic and debilitating disease. Bovine besnoitiosis is considered to be a reemerging disease in Central and Western Europe. In addition, infection by Besnoitia spp. has been reported in reindeer from Sweden and Finland. Recently, the parasite was also detected in roe deer and red deer from Spain, where an interconnection between the domestic and sylvatic cycles of B. besnoiti has been presumed. In contrast, caprine besnoitiosis seems to be enzootic to Kenya and Iran. The presence of Besnoitia spp. in small domestic ruminants has never been explored in Europe, and the role that these species might play in the epidemiology of bovine besnoitiosis, as intermediate hosts or reservoirs of B. besnoiti, remains unknown. Herein, the first serosurvey conducted in European sheep and goats from areas in Spain where bovine besnoitiosis is endemic is described. Convenience sampling was conducted of 1943 sheep and 342 goats close to cattle from the Pyrenees and Central Spain that were infected with endemic Besnoitia spp. Serum samples were first analyzed by ELISA and then by confirmatory Western blot. Specific antibodies were not found in any sampled animal. Thus, sheep are unlikely to play a role in the epidemiology of bovine besnoitiosis, at least in the sampled areas. A larger serosurvey is necessary to determine whether goats might be a putative reservoir. To confirm the results of this study, sheep and goats should be further studied in other European countries and regions where their numbers are high and where bovine besnoitiosis is spreading.


Assuntos
Anticorpos Antiprotozoários/sangue , Coccidiose/veterinária , Doenças das Cabras/parasitologia , Sarcocystidae/imunologia , Doenças dos Ovinos/parasitologia , Animais , Bovinos , Coccidiose/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Cabras/sangue , Doenças das Cabras/imunologia , Cabras , Ovinos , Doenças dos Ovinos/sangue , Doenças dos Ovinos/imunologia , Espanha/epidemiologia
12.
Parasitol Res ; 115(7): 2887-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27075308

RESUMO

Bovine besnoitiosis is an emerging disease in Europe, presenting quick spread toward central and southern Spain. Characterization of an outbreak in a free-ranging Limousin and Avileña beef cattle herd from southwestern Spain territories is attempted. Serological survey in the herd revealed increase of number of infected animals, from 34.3 % on first diagnoses/exams on December 2013 to 42.5 % in the second on April 2014. Blood analysis and serum biochemistry showed important alterations like leukocytosis (+33.2 % of mean value), with lymphocytosis (+205.3 %) and increase of LDH (+25.1 %), associated with tissue damage. Clinical cases were only observed in Limousin animals. Along with typical lesions of acute and chronic besnoitiosis, inflammatory and degenerative processes and parasitic cysts were present in the corpus cavernosum and the corpus spongiosum of penis. By using polymerase chain reaction (PCR) sequencing of 18S rDNA, Besnoitia besnoiti was confirmed as causative agent; microsatellite sequence analyses showed the homology of isolates with previously studied strains.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Surtos de Doenças , Sarcocystidae/isolamento & purificação , Animais , Bovinos , Doença Crônica , Coccidiose/epidemiologia , Coccidiose/parasitologia , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Masculino , Repetições de Microssatélites/genética , Pênis/parasitologia , Reação em Cadeia da Polimerase/veterinária , Sarcocystidae/genética , Análise de Sequência de DNA/veterinária , Espanha/epidemiologia
13.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891741

RESUMO

Neutrophils are believed to play a role in the initial stages of paratuberculosis, and it has recently been demonstrated that vaccination can modulate their function via priming or through epigenetic and metabolic reprogramming (training). Modulation of the neutrophil response against Mycobacterium avium subspecies paratuberculosis (Map) through vaccination has been demonstrated in a rabbit model but not in ruminants. Therefore, in the present work, the effect of vaccination on the response of caprine neutrophils against Map was studied. Neutrophils were isolated from non-vaccinated (n = 7) and Gudair®-vaccinated goat kids (n = 7), before vaccination and 30 days post-vaccination. Then, several neutrophil functions were quantified ex vivo: cell-free and anchored neutrophil extracellular trap (NET) release, phagocytosis, and the differential expression of several cytokines and TLR2. The induction of cell-free NETosis and TLR2 expression by Map is reported for the first time. However, vaccination showed no significant effect on any of the functions studied. This suggests that the protection conferred by Gudair® vaccination is based on mechanisms that are independent of the neutrophil function modulation. Further research into the impact of alternative vaccination strategies or the paratuberculosis infection stage on ruminant neutrophil function could provide valuable insights into its role in paratuberculosis.

14.
Front Vet Sci ; 11: 1284902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352038

RESUMO

Vaccination is the most effective tool for paratuberculosis control. Currently, available vaccines prevent the progression of clinical disease in most animals but do not fully protect them against infection and induce the formation of an injection site granuloma. The precise mechanisms that operate in response to vaccination and granuloma development, as well as the effect that adjuvants could trigger, have not been fully investigated. Therefore, this study aimed to investigate the injection site granulomas induced by two inactivated paratuberculosis vaccines, which differ in the adjuvant employed. Two groups of 45-day-old lambs were immunized with two commercially available vaccines-one (n = 4) with Gudair® and the other (n = 4) with Silirum®. A third group (n = 4) was not vaccinated and served as control. The peripheral humoral response was assessed throughout the study by a commercial anti-Mycobacterium avium subspecies paratuberculosis (Map) antibody indirect ELISA, and the cellular immune response was assessed similarly by the IFN-γ release and comparative intradermal tests. The injection site granulomas were measured during the experiment and sampled at 75 days post-vaccination (dpv) when the animals were euthanized. The tissue damage, antigen and adjuvant distribution, and the presence and amount of immune cells were then determined and assessed by immunohistochemical methods. Antibodies against Map antigens; a general macrophage marker (Iba1), M1 (iNOS), and M2 (CD204) macrophages; T (CD3), B (CD20), and γδ T lymphocytes, proteins MHC-II and NRAMP1, and cytokines IL-4, IL-10, TNF, and IFN-γ were employed. Silirum® elicited a stronger peripheral cellular immune response than Gudair®, while the latter induced larger granulomas and more tissue damage at the site of injection. Additionally, adjuvant and Map antigen distribution throughout the granulomatous inflammatory infiltrate, as well as the NRAMP1 cell expression, which is linked to antigen phagocytosis, were highly irregular. In Silirum® induced granulomas, a higher number of MHC-II and TNF-expressing cells and a lower number of M2 macrophages suggested an improved antigen presentation, which could be due to the better antigen distribution and reduced tissue damage induced by this vaccine.

15.
J Dev Orig Health Dis ; 15: e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563206

RESUMO

Early supplementation with oregano essential oil (EO) in milk replacer (MR) may improve growth, immune responses, the microbiota and the metabolome in dairy calves during pre-weaning and in adulthood. Sixteen female dairy calves (3 days of age) were divided in two groups (n = 8/group): the control group (no EO) and the EO group (0.23 ml of EO in MR during 45 days). After weaning, calves were kept in a feedlot and fed ad libitum. The animals were weighed, and blood and faecal samples were collected on days 3 (T0), 45 (T1) and 370 (T2) to measure the biochemical profile and characterise peripheral blood mononuclear cells (PBMCs; CD4+, CD8+, CD14+, CD21+ and WC1+), the metabolome and microbiota composition. The EO group only had greater average daily weight gain during the suckling (EO supplementation) period (P = 0.030). The EO group showed higher average CD14+ population (monocytes) values, a lower abundance of Ruminococcaceae UCG-014, Faecalibacterium, Blautia and Alloprevotella and increased abundances of Allistipes and Akkermansia. The modification of some metabolites in plasma, such as butyric acid, 3-indole-propionic acid and succinic acid, particularly at T1, are consistent with intestinal microbiota changes. The data suggest that early EO supplementation increases feed efficiency only during the suckling period with notable changes in the microbiota and plasma metabolome; however, not all of these changes can be considered desirable from a gut health point of view. Additional research studies is required to demonstrate that EOs are a viable natural alternative to antibiotics for improving calf growth performance and health.


Assuntos
Dieta , Óleos Voláteis , Animais , Bovinos , Feminino , Leite , Leucócitos Mononucleares , Ração Animal/análise , Desmame , Aumento de Peso , Metaboloma , Suplementos Nutricionais , Peso Corporal
16.
Vet Parasitol ; 315: 109889, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753878

RESUMO

Toxoplasma gondii is a major cause of reproductive failure in small ruminants. Genotypic diversity of T. gondii strains has been associated with variations in phenotypic traits in in vitro and murine models. However, whether such diversity could influence the outcome of infection in small ruminants remains mostly unexplored. Here, we investigate the outcome of oral challenge in sheep at mid-pregnancy with 10 sporulated oocysts from three different T. gondii isolates belonging to archetypal II and III and selected according to their genetic and phenotypic variations shown in previous studies. Seventy-three pregnant sheep were divided in four groups: G1 infected with TgShSp1 isolate (type II, ToxoDB#3), G2 with TgShSp16 isolate (type II, ToxoDB#3), G3 with TgShSp24 isolate (type III, ToxoDB#2) and G4 of uninfected control sheep. Two different approaches were carried out within this study: (i) the outcome for the pregnancy after infection (n = 33) and (ii) the lesions and parasite tropism and burden at 14 and 28 days post infection (dpi) (n = 40). The onset of hyperthermia and seroconversion occurred one and two days later, respectively in G1 when compared to G2 and G3. However, sheep that suffered from reproductive failure, either by abortion, foetal dead at the time of euthanasia or stillbirth were similar among infected groups (50%, 40% and 47%, respectively). Histological lesions in placentomes and foetal tissues from euthanized animals from the second approach were only detected at 28 dpi and mainly in G1. At 14 dpi, T. gondii-DNA was only detected in G1 in the 11% of the placentomes. However, at 28 dpi the frequency of detection in placentomes was higher in G1 (96%) than in G2 and G3 (7% and 47%, respectively) besides in foetuses was lower in G2 (20%) than in G1 and G3 (100% and 87%, respectively). Regarding late abortions, stillbirths, and lambs of G1, G2 and G3, the frequency of microscopic lesions was similar between groups (79%, 78% and 67%, respectively) whereas T. gondii-DNA was evidenced in 100%, 55% and 100%, respectively. These recently obtained T. gondii isolates led to similar reproductive losses but intra- and inter-genotype variations in the rise of hyperthermia, dynamics of antibodies, frequency of lesions and parasite detection and distribution. Thus, the different phenotypic traits of the isolates could influence the outcome of the infection and mechanisms responsible for it, and further investigations are warranted.


Assuntos
Toxoplasma , Toxoplasmose Animal , Gravidez , Feminino , Ovinos , Animais , Camundongos , Toxoplasmose Animal/parasitologia , Placenta/parasitologia , Fenótipo , Genótipo , Ruminantes
17.
J Comp Pathol ; 193: 37-49, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35487621

RESUMO

The recognition of lesions of the mammary gland in small ruminants is a useful diagnostic procedure that can aid in the identification of several udder diseases. This article reviews the main pathological lesions in this organ in sheep and goats. Mastitis is, by far, the most commonly diagnosed change. Acute clinical mastitis is associated with bacterial infections, mainly Staphylococcus aureus or Mannheimia haemolytica. Lesions related to subclinical and chronic mastitis are also described, either as localized cases or as a part of systemic diseases such as contagious agalactia, maedi-visna or tuberculosis. Neoplasia is rare in the mammary gland of sheep and goats with sporadic mammary adenocarcinomas most commonly reported. Teat lesions, including those due to trauma, orf virus infection or papillomas, are predisposing factors for the subsequent development of mastitis.


Assuntos
Doenças das Cabras , Mastite , Doenças dos Ovinos , Infecções Estafilocócicas , Animais , Feminino , Doenças das Cabras/patologia , Cabras , Glândulas Mamárias Animais/patologia , Mastite/microbiologia , Mastite/patologia , Mastite/veterinária , Ovinos , Doenças dos Ovinos/patologia , Infecções Estafilocócicas/veterinária
18.
Vaccines (Basel) ; 10(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146481

RESUMO

Vaccination of domestic ruminants against paratuberculosis has been related to homologous and heterologous protective effects that have been attributed to the establishment of a trained immune response. Recent evidence suggests that neutrophils could play a role in its development. Therefore, we propose an in vitro model for the study of the effect of paratuberculosis vaccination on the release of neutrophil extracellular traps (NETs) in sheep. Ovine neutrophils were obtained from non-vaccinated (n = 5) and vaccinated sheep (n = 5) at different times post-vaccination and infected in vitro with Mycobacterium avium subsp. paratuberculosis (Map), Staphylococcus aureus (SA), and Escherichia coli (EC). NETs release was quantified by fluorimetry and visualized by immunofluorescence microscopy. Typical NETs components (DNA, neutrophil elastase, and myeloperoxidase) were visualized extracellularly in all infected neutrophils; however, no significant percentage of extracellular DNA was detected in Map-infected neutrophils compared with SA- and EC-infected. In addition, no significant effect was detected in relation to paratuberculosis vaccination. Further assays to study NETs release in ovine neutrophils are needed. Preliminary results suggest no implication of NETs formation in the early immune response after vaccination, although other neutrophil functions should be evaluated.

19.
Animals (Basel) ; 12(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009665

RESUMO

In the past 20 years, Neospora caninum infection in sheep has been reported in at least 31 countries worldwide from all sheep-rearing continents (Europe, Asia, the Americas, Africa, and Oceania), and its role as an abortifacient agent is becoming more evident. Most studies of ovine neosporosis have focused on its epidemiology, based primarily on serological analysis, with only a few studies investigating the actual presence of the parasite by PCR and/or IHC. Individual seroprevalence rates were highly variable between countries, and even between regions within the same country, ranging from 0.0% to 67.4% positive. Furthermore, most of the studies were not directly comparable due to differences in experimental designs, sample sizes, husbandry systems, ecological factors, and serological tests (e.g., IFAT, ELISA, MAT, Western blot). The latter, along with the scarcity of studies on the relevance of N. caninum as an abortifacient agent, may bias the perception of the importance of this disease. This review summarizes the situation of N. caninum infection in sheep using all available published studies describing natural ovine neosporosis. The epidemiology shows that ovine neosporosis is found worldwide, and it poses a relevant risk to the sustainability of sheep flocks.

20.
Animals (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552372

RESUMO

Ovine toxoplasmosis is one the most relevant reproductive diseases in sheep. The genetic variability among different Toxoplasma gondii isolates is known to be related to different degrees of virulence in mice and humans, but little is known regarding its potential effects in sheep. The aim of this study was to investigate the effect of genetic variability (types II (ToxoDB #1 and #3) and III (#2)) of six recently isolated strains that showed different phenotypic traits both in a normalized mouse model and in ovine trophoblasts, in ovine monocyte-derived macrophages and the subsequent transcript expression of cytokines and iNOS (inducible nitric oxide synthase). The type III isolate (TgShSp24) showed the highest rate of internalization, followed by the type II clonal isolate (TgShSp2), while the type II PRU isolates (TgShSp1, TgShSp3, TgShSp11 and TgShSp16) showed the lowest rates. The type II PRU strains, isolated from abortions, exhibited higher levels of anti-inflammatory cytokines and iNOS than those obtained from the myocardium of chronically infected sheep (type II PRU strains and type III), which had higher levels of pro-inflammatory cytokines. The present results show the existence of significant intra- and inter-genotypic differences in the parasite-macrophage relationship that need to be confirmed in in vivo experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA