Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174072, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38897454

RESUMO

Communities neighboring monoculture plantations are vulnerable to different forms of pollution associated with agro-industrial operations. Herein, we examine the case of El Tiple, a rural Afro descendant community embedded within one of the largest sugarcane plantations in the Americas. We implemented a participatory approach to assess water pollution, exposure via water ingestion, and non-carcinogenic health risks associated with the use of local water sources available to the community. We conducted household surveys to unveil demographic characteristics and family dynamics linked to water consumption. Additionally, we measured water quality parameters and assessed the concentration glyphosate, its major metabolite (aminomethylphosphonic acid) and metals and metalloids. Drinking water El Tiple households is sourced from three primary sources: the local aqueduct system, water delivery trucks, and private deep wells. Tests on water samples from both the local aqueduct and delivery trucks showed no traces of pesticides, metals, or metalloids surpassing regulatory limits set by Colombian or EPA standards. However, we found concentration of contaminants of primary concern, including mercury (up to 0.0052 ppm) and lead (up to 0.0375 ppm) that exceed the permissible regulatory thresholds in water from groundwater wells. Residents of the peripheric subdivisions of El Tiple are four times more reliant on well water extraction than residents of the central area of the town due to lack of access to public drinking water and sanitation infrastructure. Finally, adult women and school-age children have a higher health risk associated with exposure to local pollutants than adult men due to their constant presence in the town. We conclude that expanding the coverage of clean water and sanitation infrastructure to include all households of the community would be the most recommended measure to minimize exposure and risk via ingestion of water pollutants.


Assuntos
Saccharum , Poluentes Químicos da Água , Colômbia , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Agricultura , Água Potável/química , Monitoramento Ambiental , Poluição da Água/estatística & dados numéricos , Poluição da Água/análise , Glicina/análogos & derivados , Glicina/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Abastecimento de Água , Glifosato
2.
Photochem Photobiol ; 93(5): 1224-1231, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28432821

RESUMO

Samples of natural groundwater (with low turbidity, neutral pH and 0.3 mg L-1 iron concentration) inoculated with Escherichia coli K-12 were exposed to simulated solar light both in the presence and in the absence 10 mg L-1 of H2 O2. Results demonstrated that the viability of E. coli (by DVC-FISH) was grounded to zero after 360 min of irradiation. This abatement could be caused by the oxidative stress induced by ·OH radicals or another photo-induced reactive oxygen species. Two 23 factorial experimental designs enabled the evaluation of the effects of chemical factors on the inactivation of E. coli. The first experimental design considered the pH, iron and H2 O2 , while the second evaluated the ions fluoride, carbonate and phosphate found in groundwater. pH was found to play a key role in the inactivation of E. coli. The best reduction in viability was obtained at the lower pH (6.75), while a nonsignificant effect was observed when iron or H2 O2 concentrations were raised. At higher concentrations, anions, such as carbonate and phosphate, negatively affected the E. coli abatement. However, a higher concentration of fluoride accelerated it. In all experiments, the pH was observed to rise to values higher than 8.0 units after 360 min of treatment.


Assuntos
Desinfecção , Água Subterrânea/química , Peróxido de Hidrogênio/química , Ferro/química , Processos Fotoquímicos , Carbonatos/química , Escherichia coli K12/isolamento & purificação , Fluoretos/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Fosfatos/química , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA