Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(25): 256602, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802455

RESUMO

The induction of synthetic magnetic fields on lattice structures allows an effective control of their localization and transport properties. In this Letter, we generate effective π magnetic fluxes on a multiorbital diamond lattice, where first-order (S) and second-order (P) modes effectively interact. We implement a z-scan method on femtosecond-laser-written photonic lattices and experimentally observe Aharonov-Bohm caging for S and P modes, as a consequence of a band transformation and the emergence of a spectrum composed of three degenerated flat bands. As an application, we demonstrate a perfect control of the dynamics, where we translate an input excitation across the lattice in a completely linear and controlled way. Our model, based on a flat band spectrum, allows us to choose the direction of transport depending on the excitation site or input phase.

2.
Phys Rev Lett ; 127(6): 066601, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420317

RESUMO

Interorbital coupling refers to the possibility of exciting orbital states by otherwise orthogonal noninteracting modes, a forbidden process in photonic lattices due to intrinsic propagation constant detuning. In this Letter, using a femtosecond (fs) laser writing technique, we experimentally demonstrate that fundamental and excited orbital states can couple each other when located at different spatial positions. We perform a full characterization of an asymmetric double-well-like potential and implement a scan method to effectively map the dynamics along the propagation coordinate. Our fundamental observation also constitutes a direct solution for a spatial mode converter device, which could be located in any position inside a photonic glass chip. By taking advantage of the phase structure of higher-order photonic modes and the effective negative coupling generated, we propose a trimer configuration as a phase beam splitter, which could be of great relevance for multiplexing and interference-based photonic concatenated operations.

3.
Sci Rep ; 14(1): 12435, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816484

RESUMO

Advancements in photonics technologies have significantly enhanced their capability to facilitate experiments involving quantum light, even at room temperature. Nevertheless, fully integrating photonic chips that include quantum light sources, effective manipulation and transport of light minimizing losses, and appropriate detection systems remains an ongoing challenge. Topological photonic systems have emerged as promising platforms to protect quantum light properties during propagation, beyond merely preserving light intensity. In this work, we delve into the dynamics of non-classical light traversing a Su-Schrieffer-Heeger photonic lattice with topological domain walls. Our focus centers on how topology influences the quantum properties of light as it moves across the array. By precisely adjusting the spacing between waveguides, we achieve dynamic repositioning and interaction of domain walls, facilitating effective beam-splitting operations. Our findings demonstrate high-fidelity transport of non-classical light across the lattice, replicating known results that are now safeguarded by the topology of the system. This protection is especially beneficial for quantum communication protocols with continuous variable states. Our study enhances the understanding of light dynamics in topological photonic systems and paves the way for high-fidelity, topology-protected quantum communication.

4.
Sci Rep ; 13(1): 13057, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567902

RESUMO

The capacity of a physical system to transport and localize energy or information is usually linked to its spatial configuration. This is relevant for integration and transmission of signals as performed, for example, by the dendrites of neuronal cells. Inspired by recent works on the organization of spines on the surface of dendrites and how they promote localization or propagation of electrical impulses in neurons, here we propose a linear photonic lattice configuration to study how the geometric features of a dendrite-inspired lattice allows for the localization or propagation of light on a completely linear structure. We show that by increasing the compression of the photonic analogue of spines and thus, by increasing the coupling strength of the spines with the main chain (the "photonic dendrite"), flat band modes become prevalent in the system, allowing spatial localization in the linear - low energy - regime. Furthermore, we study the inclusion of disorder in the distribution of spines and show that the main features of ordered systems persist due to the robustness of the flat band states. Finally, we discuss if the photonic analog, having evanescent interactions, may provide insight into linear morphological mechanisms at work occurring in some biological systems, where interactions are of electric and biochemical origin.

5.
Sci Rep ; 11(1): 21411, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725440

RESUMO

Ribbon lattices are kind of transition systems in between one and two dimensions, and their study is crucial to understand the origin of different emerging properties. In this work, we study a Lieb ribbon lattice and the localization-delocalization transition occurring due to a reduction of lattice distances (compression) and the corresponding flat band deformation. We observe how above a critical compression ratio the energy spreads out and propagates freely across the lattice, therefore transforming the system from being a kind of insulator into a conductor. We implement an experiment on a photonic platform and show an excellent agreement with the predicted phenomenology. Our findings suggest and prove experimentally the use of compression or mechanical deformation of lattices to switch the transport properties of a given system.

6.
Sci Rep ; 10(1): 18307, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110181

RESUMO

We report on the observation and characterization of broad-band waveguiding of surface gravity waves in an open channel, in the shallow water limit. The waveguide is constructed by changing locally the depth of the fluid layer, which creates conditions for surface waves to propagate along the generated guide. We present experimental and numerical results of this shallow water waveguiding, which can be straightforwardly matched to the one-dimensional water wave equation of shallow water waves. Our work revitalizes water waveguiding research as a relevant and controllable experimental setup to study complex phenomena using waveguide geometries.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23848755

RESUMO

We explore the fundamental question of the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization in one-, two-, and three-dimensional lattices. A simple and general criterion is developed, for the case of an initially localized excitation, to define the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. We introduce a method for computing the dynamically excited frequencies, which helps us validate our stationary ansatz approach and the effective frequency concept. A general analytical estimate of the critical nonlinearity is obtained, with an extra parameter to be determined. We find this parameter to be almost constant for two-dimensional systems and prove its validity by applying it successfully to two-dimensional binary lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA