Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(3): 4564-4582, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209690

RESUMO

The growing applicability of glass materials drives the development of novel processing methods, which usually lack comprehensive comparison to conventional or state-of-art ones. That is especially delicate for assessing the flexural strength of glass, which is highly dependent on many factors. This paper compares the traditional top-down laser ablation methods in the air to those assisted with a flowing water film using picosecond pulses. Furthermore, the bottom-up cutting method using picosecond and nanosecond pulses is investigated as well. The cutting quality, sidewall roughness, subsurface damage and the four-point bending strength of 1 mm-thick soda-lime glass are evaluated. The flexural strength of top-down cut samples is highly reduced due to heat accumulation-induced cracks, strictly orientated along the sidewall. The subsurface crack propagation can be reduced using water-assisted processing, leading to the highest flexural strength among investigated techniques. Although bottom-up cut samples have lower flexural strength than water-assisted, bottom-up technology allows us to achieve higher cutting speed, taper-less sidewalls, and better quality on the rear side surface and is preferable for thick glass processing.

2.
Environ Monit Assess ; 187(5): 268, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25893760

RESUMO

Spatial distribution of activity concentrations of (137)Cs, (90)Sr, and (239,240)Pu in the top layer of undisturbed meadow soils was compared between two regional transects across Lithuania: one in the SW region, more affected by the Chernobyl radioactive fallout, and the other in the NE region. Radiochemical, γ-, α-, ß-, and mass spectrometric methods were used to determine the radionuclide activity. Our results validate that higher activity concentrations in the top soil layer were present in the SW region, despite the fact that sampling was performed after 22 years of the Chernobyl Nuclear Power Plant (NPP) accident. Using the activity concentration ratio (137)Cs/(239,240)Puglobal, the contribution of the Chernobyl NPP accident to the total radiocesium activity concentrations in these meadow soils was evaluated and found to be in the range of 6.5-59.1%. Meanwhile, the activity concentration ratio (238)Pu/(239,240)Pu showed that Chernobyl-derived Pu occurred at almost half of the sampling sites. The locations with maximal values of 47% of Chernobyl-derived Pu material were close to northeastern Poland, where deposition of most of non-volatile radioisotopes from the Chernobyl plume was determined.


Assuntos
Monitoramento de Radiação , Cinza Radioativa/análise , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Pradaria , Plutônio/análise , Polônia , Centrais Elétricas , Solo/química , Radioisótopos de Estrôncio/análise
3.
J Environ Radioact ; 253-254: 106990, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049342

RESUMO

Mobile capabilities of 137Cs, 239,240Pu and some stable element physicochemical forms were studied in soil layers at a depth of 6-8 cm (maximum concentrations of radionuclides) of non-boggy and waterlogged soil cores sampled on the shores of Lake Bedugnis (Lithuania). Soil samples were acidic with small amount of clay (muscovite). The radionuclide activity concentrations were about 2.5 times higher in non-boggy soil. It was explained by different conditions of deposition of radioactive fallout at these sampling sites and density of the soil samples. The value of the exchangeable fraction of radionuclides is shown to be an indicator of their migration capabilities in the soil. Under anaerobic conditions in waterlogged soil (stagnant pore water conditions) and due to the presence of clay admixture, ∼90% of 137Cs was concentrated in the residual fraction and its mobility was low. 239,240Pu was concentrated mainly in organic matter with rather large exchangeable fractions (∼9.6-∼13.9%). Under oxidizing conditions in non-boggy soil (dynamic pore water conditions in the case of rain), 239,240Pu was mostly concentrated in the oxide fraction. Its exchangeable fractions were less than those in waterlogged soil and, respectively, its mobility was lower. In non-boggy soils, exchangeable fractions of 137Cs were large and varied in the range of 10.1-12.2%, which indicated its high mobility. In the case, 137Cs adsorption by clay materials was reduced and its residual fraction did not exceed 71.3%. The obtained data show that in the area of Lake Bedugnis, the migration capabilities of 137Cs and 239,240Pu change in antiphase.


Assuntos
Plutônio , Monitoramento de Radiação , Cinza Radioativa , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Argila , Plutônio/análise , Cinza Radioativa/análise , Solo , Poluentes Radioativos do Solo/análise , Água/análise
4.
J Environ Radioact ; 237: 106702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284309

RESUMO

Pu distribution coefficient Kd variation was experimentally determined and examined in natural soil samples considering the type of soil, particle size, pH, the concentration of macroelements and organic matter content. This research was carried out with sand, silty sand, peat, clayey sand and clayey loam samples by applying 236Pu tracer in flow-through column tests. Due to relatively short contact time of 0.5-40 h the tests are considered as have not reached equilibrium state and represent the fast-moving contaminants retardation processes closer to field conditions. Every soil sample was fractionated into two particle size fractions: ≤0.25 mm and 0.25 ÷ 0.5 mm. Analysis revealed that Kd of Pu is higher for the smaller soil particle fraction (≤0.25 mm). The experimental study with 1.6, 4, 6 and 9 pH tracer solution revealed a tendency of elevated Kd when 4 pH and 6 pH solutions were applied, but obtained Kd values were not correlated with initial soil pH due to high buffering capacity of soils. This study shows a very significant influence (r = 0.98) of organic matter content on the Pu distribution coefficient. The Kd of Pu for the fine fraction of peat soil with high organic matter content (67%) reached maximum values of 6597 L/kg and 6200 L/kg when tracer solution was applied of pH = 4 and pH = 6, respectively. In comparison, the minimum Kd value of 3.9 L/kg was obtained for the coarse silty sand fraction with the lowest organic matter content of 1.3% at tracer pH = 1.6. A statistically reliable high correlations of r = 0.95 and 0.94 were also observed between Kd and specific soil elements Mg and Pb content in soils, respectively. The content of Fe in soils was significantly correlated (r = 0.67) with the Kd values of plutonium as well. However, the organic matter content in soils appeared to be the governing factor determining good correlations and causing the highest Kd of Pu values.


Assuntos
Plutônio , Monitoramento de Radiação , Poluentes Radioativos do Solo , Poluentes do Solo , Plutônio/análise , Solo , Poluentes Radioativos do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA