RESUMO
Weissella cibaria is one of the bacteria in charge of the initial fermentation of kimchi and has beneficial effects such as immune-modulating, antagonistic, and antioxidant activities. In our study, we aimed to estimate the safety of W. cibaria JW15 for the use of probiotics according to international standards based on phenotypic (antibiotic resistance, hemolysis, and toxic metabolite production) and genotypic analysis (virulence genes including antibiotic resistance genes). The results of the safety assessment on W. cibaria JW15 were as follows; (1) antibiotic resistance genes (ARGs) (kanamycin and vancomycin etc.) were intrinsic characteristics; (2) There were no acquired virulence genes including Cytolysin (cylA), aggregation substance (asa1), Hyaluronidase (hyl), and Gelatinase (gelE); (3) this strain also lacked ß-hemolysis and the production of toxic metabolites (D-lactate and bile salt deconjugation). Consequently, W. cibaria JW15 is expected to be applied as a functional food ingredient in the food market.
RESUMO
The production of good Meju soybean paste primarily depends on the selection of raw materials and fermenting microorganisms, which together influence its characteristic metabolites, taste, and aroma. In this study, we analyzed the relationship between properties and metabolites in Meju samples fermented by Aspergillus oryzae alone or with Bacillus velezensis. We developed fast-stable processing techniques to obtain Meju from A. oryzae and B. velezensis using the inoculation method, thereby ensuring safety in the production of soybean paste. The amino-type nitrogen content increased from an initial 180-228 mg% to a final 226-776 mg% during fermentation and was higher in Meju inoculated separately with the fungi and bacteria (C group) than in Meju co-inoculated with both the starters concurrently (D group). The levels of metabolites such as glucose, myo-inositol, glycerol, and fatty acids (palmitic, stearic, oleic, and linoleic acids) in Meju fermented by A. oryzae with B. velezensis were higher than those in Meju fermented by A. oryzae alone. Fungal growth was affected by the inoculated bacteria, which often occurs during the fermentation of co-inoculated Meju.
RESUMO
Fermented vinegar is prepared from grains and medicinal plants. Here, we produced vinegar from peeled and unpeeled roots of bellflowers (Platycodon grandiflorum) using Acetobacter pasteurianus A11-2 and analyzed bellflower vinegar (BV) samples using gas chromatography-mass spectrometry and quadrupole time-of-flight mass spectrometry over 15 days of fermentation to assess the quality. We also evaluated their antibacterial and immunoenhancing effects using RAW 264.7 macrophage cells. The major metabolites in BV are organic acids, with the main volatile compounds being ethyl acetate, isoamyl acetate, 1-pentanol, hydroxypropanoic acid, and malonic acid. When we fermented BV from unpeeled roots for 10 days with a starter culture, we observed significant antibacterial and immunoenhancing effects in macrophages. Therefore, we could determine the metabolite and functional differences in vinegar obtained from bellflower roots and proposed that bellflower roots with peel are an effective substrate for developing vinegar and healthy food products.