Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Cancer ; 142(3): 540-546, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960316

RESUMO

Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p = 2.08 × 10-4 ; OR, 1.14; 95% CI, 1.06-1.23), and it was genome-wide significant in combined analysis (p = 1.50 × 10-9 ; OR, 1.12; 95% CI, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery rate < 0.1), but new risk loci were not found. These results replicate the effects of multiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.


Assuntos
Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Estudos de Casos e Controles , Estudos de Coortes , Estônia/epidemiologia , Finlândia/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Sistema de Registros
2.
PLoS Genet ; 9(10): e1003876, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146633

RESUMO

Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Perda de Heterozigosidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Exoma , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
3.
Int J Cancer ; 135(3): 611-23, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24382590

RESUMO

ARID1A has been identified as a novel tumor suppressor gene in ovarian cancer and subsequently in various other tumor types. ARID1A belongs to the ARID domain containing gene family, which comprises of 15 genes involved, for example, in transcriptional regulation, proliferation and chromatin remodeling. In this study, we used exome sequencing data to analyze the mutation frequency of all the ARID domain containing genes in 25 microsatellite unstable (MSI) colorectal cancers (CRCs) as a first systematic effort to characterize the mutation pattern of the whole ARID gene family. Genes which fulfilled the selection criteria in this discovery set (mutations in at least 4/25 [16%] samples, including at least one nonsense or splice site mutation) were chosen for further analysis in an independent validation set of 21 MSI CRCs. We found that in addition to ARID1A, which was mutated in 39% of the tumors (18/46), also ARID1B (13%, 6/46), ARID2 (13%, 6/46) and ARID4A (20%, 9/46) were frequently mutated. In all these genes, the mutations were distributed along the entire length of the gene, thus distinguishing them from typical MSI target genes previously described. Our results indicate that in addition to ARID1A, other members of the ARID gene family may play a role in MSI CRC.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Exoma/genética , Repetições de Microssatélites/genética , Mutação/genética , Proteínas Nucleares/genética , Proteína 1 de Ligação ao Retinoblastoma/genética , Fatores de Transcrição/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
4.
Gastroenterology ; 145(3): 540-3.e22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684749

RESUMO

Microsatellite instability can be found in approximately 15% of all colorectal cancers. To detect new oncogenes we sequenced the exomes of 25 colorectal tumors and respective healthy colon tissue. Potential mutation hot spots were confirmed in 15 genes; ADAR, DCAF12L2, GLT1D1, ITGA7, MAP1B, MRGPRX4, PSRC1, RANBP2, RPS6KL1, SNCAIP, TCEAL6, TUBB6, WBP5, VEGFB, and ZBTB2; these were validated in 86 tumors with microsatellite instability. ZBTB2, RANBP2, and PSRC1 also were found to contain hot spot mutations in the validation set. The form of ZBTB2 associated with colorectal cancer increased cell proliferation. The mutation hot spots might be used to develop personalized tumor profiling and therapy.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Oncogenes , Idoso , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Humanos , Masculino , Análise de Sequência de DNA
5.
Scand J Gastroenterol ; 48(6): 672-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23544471

RESUMO

OBJECTIVE: Early-onset colorectal cancer (CRC), defined here as age of onset less than 40 years, develops frequently in genetically predisposed individuals. Next-generation sequencing is an increasingly available option in the diagnostic workup of suspected hereditary susceptibility, but little is known about the practical feasibility and additional diagnostic yield of the technology in this patient group. MATERIALS AND METHODS: We analyzed 38 young CRC patients derived from a set of 1514 CRC cases. All 38 tumors had been tested in our laboratory for microsatellite instability (MSI), and Sanger sequencing had been used to screen for MLH1 and MSH2 mutations in MSI cases. Also, gastrointestinal polyposis had been diagnosed clinically and molecularly. Family histories were acquired from national registries. If inherited syndromes had not been diagnosed in routine diagnostic efforts (n = 23), normal tissue DNA was analyzed for mutations in a comprehensive set of high-penetrance genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11, and PTEN) by exome sequencing. RESULTS: CRC predisposition syndromes were confirmed in 42% (16/38) of early-onset CRC patients. Hereditary nonpolyposis colorectal cancer was diagnosed in 12 (32%) patients, familial adenomatous polyposis in three (7.9%), and juvenile polyposis in one (2.6%) patient. Exome sequencing revealed one additional MLH1 mutation. Over half of the patients had advanced cancers (Dukes C or D, 61%, 23/38). The majority of nonsyndromic patients had unaffected first-degree relatives and microsatellite-stable tumors. CONCLUSIONS: Microsatellite instability positivity or gastrointestinal polyposis characterized all patients with unambiguous highly penetrant germline mutations. In our series, exome sequencing produced little added value in diagnosing the underlying predisposition conditions.


Assuntos
Polipose Adenomatosa do Colo/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Exoma/genética , Predisposição Genética para Doença , Polipose Intestinal/congênito , Síndromes Neoplásicas Hereditárias/diagnóstico , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal/genética , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , Adenosina Trifosfatases/genética , Adulto , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , DNA Glicosilases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Testes Genéticos , Humanos , Polipose Intestinal/diagnóstico , Polipose Intestinal/genética , Masculino , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Síndromes Neoplásicas Hereditárias/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA , Proteína Smad4/genética , Adulto Jovem
6.
Int J Cancer ; 127(12): 2974-80, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21351276

RESUMO

It is estimated that up to 35% of colorectal cancers (CRC) can be explained by hereditary factors. However, genes predisposing to highly penetrant CRC syndromes account for only a small fraction of all cases. Thus, most CRCs still remain molecularly unexplained. A recent systematic sequencing study on well-annotated human protein coding genes identified 280 somatically mutated candidate cancer genes (CAN genes) in breast and colorectal cancer. It is estimated that 8% of all reported cancer genes show both somatic and germline mutations. Therefore, the identified CAN genes serve as a distinct set of candidates for being involved in hereditary susceptibility. The aim of this study was to evaluate the role of colorectal CAN genes in familial CRC. Samples from 45 familial CRCs without known cancer predisposing mutations were screened for somatic and germline variants in 15 top-ranked CAN genes. Six of the genes were found to be somatically mutated in our tumor series. We identified 22 nonsynonymous somatic mutations of which the majority was of missense type. In germline, three novel nonsynonymous variants were identified in the following genes: CSMD3, EPHB6 and C10orf137, and none of the variants were present in 890 population-matched healthy controls. It is possible that the identified germline variants modulate predisposition to CRC. Functional validation and larger sample sets, however, will be required to clarify the role of the identified germline variants in CRC susceptibility.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , DNA de Neoplasias/genética , Variação Genética/genética , Mutação em Linhagem Germinativa/genética , Idoso , Estudos de Casos e Controles , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Linhagem , Prognóstico , Estudos Prospectivos , Receptores Proteína Tirosina Quinases/genética , Receptores da Família Eph , Reto/metabolismo , Reto/patologia
7.
EMBO Mol Med ; 10(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30108113

RESUMO

Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Instabilidade de Microssatélites , Mutação Puntual , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
8.
Cancer Res ; 77(15): 4078-4088, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28611049

RESUMO

Approximately 15% of colorectal cancers exhibit microsatellite instability (MSI), which leads to accumulation of large numbers of small insertions and deletions (indels). Genes that provide growth advantage to cells via loss-of-function mutations in microsatellites are called MSI target genes. Several criteria to define these genes have been suggested, one of them being simple mutation frequency. Microsatellite mutation rate, however, depends on the length and nucleotide context of the microsatellite. Therefore, assessing the general impact of mismatch repair deficiency on the likelihood of mutation events is paramount when following this approach. To identify MSI target genes, we developed a statistical model for the somatic background indel mutation rate of microsatellites to assess mutation significance. Exome sequencing data of 24 MSI colorectal cancers revealed indels at 54 million mononucleotide microsatellites of three or more nucleotides in length. The top 105 microsatellites from 71 genes were further analyzed in 93 additional MSI colorectal cancers. Mutation significance and estimated clonality of mutations determined the most likely MSI target genes to be the aminoadipate-semialdehyde dehydrogenase AASDH and the solute transporter SLC9A8 Our findings offer a systematic profiling of the somatic background mutation rate in protein-coding mononucleotide microsatellites, allowing a full cataloging of the true targets of MSI in colorectal cancer. Cancer Res; 77(15); 4078-88. ©2017 AACR.


Assuntos
Neoplasias Colorretais/genética , Análise Mutacional de DNA/métodos , Instabilidade de Microssatélites , Modelos Estatísticos , Humanos , Mutação
9.
Fam Cancer ; 14(3): 449-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25930744

RESUMO

Approximately 15% of colorectal cancers exhibit instability of short nucleotide repeat regions, microsatellites. These tumors display a unique clinicopathologic profile and the microsatellite instability status is increasingly used to guide clinical management as it is known to predict better prognosis as well as resistance to certain chemotherapeutics. A panel of five repeats determined by the National Cancer Institute, the Bethesda panel, is currently the standard for determining the microsatellite instability status in colorectal cancer. Recently, a quasimonomorphic mononucleotide repeat 16T/U at the 3' untranslated region of the Ewing sarcoma breakpoint region 1 gene was reported to show perfect sensitivity and specificity in detecting mismatch repair deficient colorectal, endometrial, and gastric cancers in two independent populations. To confirm this finding, we replicated the analysis in 213 microsatellite unstable colorectal cancers from two independent populations, 148 microsatellite stable colorectal cancers, and the respective normal samples by PCR and fragment analysis. The repeat showed nearly perfect sensitivity for microsatellite unstable colorectal cancer as it was altered in 212 of the 213 microsatellite unstable (99.5%) and none of the microsatellite stable colorectal tumors. This repeat thus represents the first potential single marker for detecting microsatellite instability.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Ligação a Calmodulina/genética , Neoplasias Colorretais/genética , Instabilidade de Microssatélites , Proteínas de Ligação a RNA/genética , Dinamarca , Finlândia , Humanos , Polirribonucleotídeos/genética , Proteína EWS de Ligação a RNA , Sequências Repetitivas de Ácido Nucleico
10.
Cancer Genet ; 208(1-2): 35-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25749350

RESUMO

The heritability of colorectal cancer (CRC) is incompletely understood, and the contribution of undiscovered rare variants may be important. In search of rare disease-causing variants, we exome sequenced 22 CRC patients who were diagnosed before the age of 40 years. Exome sequencing data from 95 familial CRC patients were available as a validation set. Cases with known CRC syndromes were excluded. All patients were from Finland, a country known for its genetically homogenous population. We searched for rare nonsynonymous variants with allele frequencies below 0.1% in 3,374 Finnish and 58,112 non-Finnish controls. In addition, homozygous and compound heterozygous variants were studied. No genes with rare loss-of-function variants were present in more than one early-onset CRC patient. Three genes (ADAMTS4, CYTL1, and SYNE1) harbored rare loss-of-function variants in both early-onset and familial CRC cases. Five genes with homozygous variants in early-onset CRC cases were found (MCTP2, ARHGAP12, ATM, DONSON, and ROS1), including one gene (MCTP2) with a homozygous splice site variant. All discovered homozygous variants were exclusive to one early-onset CRC case. Independent replication is required to associate the discovered variants with CRC. These findings, together with a lack of family history in 19 of 22 (86%) early-onset patients, suggest genetic heterogeneity in unexplained early-onset CRC patients, thus emphasizing the requirement for large sample sizes and careful study designs to elucidate the role of rare variants in CRC susceptibility.


Assuntos
Neoplasias Colorretais/genética , Exoma/genética , Predisposição Genética para Doença/genética , Mutação , Adulto , Idade de Início , Neoplasias Colorretais/epidemiologia , Saúde da Família , Finlândia/epidemiologia , Frequência do Gene , Genótipo , Humanos , Análise de Sequência de DNA/métodos , Adulto Jovem
11.
Nat Genet ; 47(7): 818-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26053496

RESUMO

Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for mutations. Here we report frequent mutations at CBSs in cancers displaying a mutational signature where mutations in A•T base pairs predominate. Integration of whole-genome sequencing data from 213 colorectal cancer (CRC) samples and chromatin immunoprecipitation sequencing (ChIP-exo) data identified frequent point mutations at CBSs. In contrast, CRCs showing an ultramutator phenotype caused by defects in the exonuclease domain of DNA polymerase ɛ (POLE) displayed significantly fewer mutations at and adjacent to CBSs. Analysis of public data showed that multiple cancer types accumulate CBS mutations. CBSs are a major mutational hotspot in the noncoding cancer genome.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas Repressoras/fisiologia , Sítios de Ligação , Fator de Ligação a CCCTC , Neoplasias Colorretais , Sequência Consenso , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Mutação Puntual , Sequências Reguladoras de Ácido Nucleico , Coesinas
12.
Cancer Genet ; 205(1-2): 25-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22429595

RESUMO

Recent genome-wide association studies have identified multiple regions at 8q24 that confer susceptibility to many cancers. In our previous work, we showed that the colorectal cancer (CRC) risk variant rs6983267 at 8q24 resides within a TCF4 binding site at the MYC-335 enhancer, with the risk allele G having a stronger binding capacity and Wnt responsiveness. Here, we searched for other potential functional variants within MYC-335. Genetic variation within MYC-335 was determined in samples from individuals of European, African, and Asian descent, with emphasis on variants in putative transcription factor binding sites. A 2-bp GA deletion rs67491583 was found to affect a growth factor independent (GFI) binding site and was present only in individuals with African ancestry. Chromatin immunoprecipitation performed in heterozygous cells showed that the GA deletion had an ability to reduce binding of the transcriptional repressors GFI1 and GFI1b. Screening of 1,027 African American colorectal cancer cases and 1,773 healthy controls did not reveal evidence for association (odds ratio: 1.17, 95% confidence interval: 0.97-1.41, P = 0.095). In this study, rs67491583 was identified as another functional variant in the CRC-associated enhancer MYC-335, but further studies are needed to establish the role of rs67491583 in the colorectal cancer predisposition of African Americans.


Assuntos
Carcinoma/genética , Cromossomos Humanos Par 8 , Neoplasias Colorretais/genética , Genes myc/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Povo Asiático/genética , Povo Asiático/estatística & dados numéricos , Carcinoma/etnologia , Estudos de Casos e Controles , Cromossomos Humanos Par 8/genética , Estudos de Coortes , Neoplasias Colorretais/etnologia , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genes myc/fisiologia , Genótipo , Células HEK293 , Células HeLa , Humanos , Transfecção , Células Tumorais Cultivadas , População Branca/genética , População Branca/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA