Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Molecules ; 27(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630635

RESUMO

Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein-protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.


Assuntos
Arabidopsis , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio
2.
Plant J ; 104(6): 1472-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031578

RESUMO

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonagem Molecular , Coenzima A Ligases/genética , Citosol/enzimologia , Hypericum/enzimologia , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular , Peroxissomos/enzimologia , Filogenia , Proteínas de Plantas/genética
3.
Plant J ; 100(6): 1176-1192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437324

RESUMO

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Assuntos
Benzoatos/metabolismo , Cinamatos/metabolismo , Ligases/metabolismo , Malus/metabolismo , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Compostos de Bifenilo , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligases/química , Malus/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Doenças das Plantas/microbiologia , Folhas de Planta , Conformação Proteica , Alinhamento de Sequência , Sesquiterpenos , Nicotiana , Fitoalexinas
4.
Plant Cell Environ ; 43(10): 2336-2354, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681574

RESUMO

Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.


Assuntos
Óxido Nítrico/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Atmosfera , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas/metabolismo
5.
New Phytol ; 222(1): 318-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485455

RESUMO

Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.


Assuntos
Dimetilaliltranstransferase/metabolismo , Hypericum/enzimologia , Xantonas/química , Xantonas/metabolismo , Biocatálise , Cloroplastos/metabolismo , Dimetilaliltranstransferase/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Hypericum/genética , Cinética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estereoisomerismo
6.
Plant Physiol ; 176(2): 1327-1340, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187570

RESUMO

The ambient light environment controls many aspects of plant development throughout a plant's life cycle. Such complex control is achieved because a key repressor of light signaling, the Arabidopsis (Arabidopsis thaliana) COP1/SPA E3 ubiquitin ligase causes the degradation of multiple regulators of endogenous developmental pathways. This includes the CONSTANS (CO) transcription factor that is responsible for photoperiodic control of flowering time. There are 16 CO-like proteins whose functions are only partly understood. Here, we show that 14 CO-like (COL) proteins bind CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF PHYTOCHROME A-105 (SPA)1 in vitro. We subsequently focused on COL12 and show that COL12 binds COP1 and SPA proteins in vivo. The COL12 protein is degraded in darkness in a COP1-dependent fashion, indicating that COL12 is a substrate of the COP1/SPA ubiquitin ligase. Overexpression of COL12 causes late flowering specifically in long day conditions by decreasing the expression of FLOWERING LOCUS T This phenotype is genetically dependent on CO. Consistent with this finding, COL12 physically interacts with CO in vivo, suggesting that COL12 represses flowering by inhibiting CO protein function. We show that COL12 overexpression did not alter CO protein stability. It is therefore likely that COL12 represses the activity of CO rather than CO levels. Overexpression of COL12 also affects plant architecture by increasing the number of rosette branches and reducing inflorescence height. These phenotypes are CO independent. Hence, we suggest that COL12 affects plant development through CO-dependent and CO-independent mechanisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Flores/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Flores/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
New Phytol ; 217(3): 1099-1112, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210088

RESUMO

Xanthones are specialized metabolites with antimicrobial properties, which accumulate in roots of Hypericum perforatum. This medicinal plant provides widely taken remedies for depressive episodes and skin disorders. Owing to the array of pharmacological activities, xanthone derivatives attract attention for drug design. Little is known about the sites of biosynthesis and accumulation of xanthones in roots. Xanthone biosynthesis is localized at the transcript, protein, and product levels using in situ mRNA hybridization, indirect immunofluorescence detection, and high lateral and mass resolution mass spectrometry imaging (AP-SMALDI-FT-Orbitrap MSI), respectively. The carbon skeleton of xanthones is formed by benzophenone synthase (BPS), for which a cDNA was cloned from root cultures of H. perforatum var. angustifolium. Both the BPS protein and the BPS transcripts are localized to the exodermis and the endodermis of roots. The xanthone compounds as the BPS products are detected in the same tissues. The exodermis and the endodermis, which are the outermost and innermost cell layers of the root cortex, respectively, are not only highly specialized barriers for controlling the passage of water and solutes but also preformed lines of defence against soilborne pathogens and predators.


Assuntos
Vias Biossintéticas , Hypericum/anatomia & histologia , Hypericum/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Xantonas/metabolismo , Acil Coenzima A/metabolismo , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Xantonas/química
8.
Plant Physiol ; 174(2): 798-814, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28446637

RESUMO

Water limitation of plants causes stomatal closure to prevent water loss by transpiration. For this purpose, progressing soil water deficit is communicated from roots to shoots. Abscisic acid (ABA) is the key signal in stress-induced stomatal closure, but ABA as an early xylem-delivered signal is still a matter of debate. In this study, poplar plants (Populus × canescens) were exposed to water stress to investigate xylem sap sulfate and ABA, stomatal conductance, and sulfate transporter (SULTR) expression. In addition, stomatal behavior and expression of ABA receptors, drought-responsive genes, transcription factors, and NCED3 were studied after feeding sulfate and ABA to detached poplar leaves and epidermal peels of Arabidopsis (Arabidopsis thaliana). The results show that increased xylem sap sulfate is achieved upon drought by reduced xylem unloading by PtaSULTR3;3a and PtaSULTR1;1, and by enhanced loading from parenchyma cells into the xylem via PtaALMT3b. Sulfate application caused stomatal closure in excised leaves and peeled epidermis. In the loss of sulfate-channel function mutant, Atalmt12, sulfate-triggered stomatal closure was impaired. The QUAC1/ALMT12 anion channel heterologous expressed in oocytes was gated open by extracellular sulfate. Sulfate up-regulated the expression of NCED3, a key step of ABA synthesis, in guard cells. In conclusion, xylem-derived sulfate seems to be a chemical signal of drought that induces stomatal closure via QUAC1/ALMT12 and/or guard cell ABA synthesis.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Estômatos de Plantas/fisiologia , Sulfatos/metabolismo , Xilema/metabolismo , Ácido Abscísico/metabolismo , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Secas , Feminino , Regulação da Expressão Gênica de Plantas , Mutação , Oócitos/metabolismo , Transportadores de Ânions Orgânicos/genética , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/fisiologia , Transdução de Sinais , Xenopus laevis , Xilema/química
9.
Glob Chang Biol ; 24(1): e40-e54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715112

RESUMO

A 2-year Free Air CO2 Enrichment (FACE) experiment was conducted with winter wheat. It was investigated whether elevated atmospheric CO2 concentration (e[CO2 ]) inhibit nitrate assimilation and whether better growth and nitrogen acquisition under e[CO2 ] can be achieved with an ammonium-based fertilization as it was observed in hydroponic culture with wheat. Under e[CO2 ] a decrease in nitrate assimilation has been discussed as the cause for observed declines in protein concentration in C3 cereals. Wheat was grown under ambient [CO2 ] and e[CO2 ] (600 ppm) with three levels (deficiency, optimal, and excessive) of nitrate-based fertilization (calcium ammonium nitrate; CAN) or with optimal ammonium-based fertilization. Ammonium fertilization was applied via injection of an ammonium solution into the soil in the 1st year and by surface application of urea combined with nitrification inhibitors (UNI) in the 2nd year. Results showed that ammonium-based fertilization was successfully achieved in the 2nd year with respect to nitrification control, as soil ammonium concentration was considerably higher over the growing season for UNI fertilized plots compared to optimal CAN plots. Also, stem nitrate concentration, flag leaf nitrate reductase activity, and transcript levels were lower in UNI fertilized plants compared to optimal CAN. Regarding the e[CO2 ] effect on nitrate reductase activity and transcript levels, no alteration could be observed for any nitrogen fertilizer treatment. Flag leaf growth was stimulated under e[CO2 ] leading to an enhanced nitrate reductase activity referred to m2 ground area at late flowering being in line with a higher nitrogen acquisition under e[CO2 ]. Moreover, nitrogen acquisition was considerably higher in nitrate fertilized plants compared to ammonium fertilized plants under e[CO2 ]. Our results obtained under field conditions show that a change from nitrate- to ammonium-based fertilization will not lead to a better growth and nitrogen acquisition of winter wheat under future e[CO2 ].


Assuntos
Compostos de Amônio/administração & dosagem , Dióxido de Carbono/administração & dosagem , Nitratos/administração & dosagem , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Triticum/fisiologia , Compostos de Amônio/metabolismo , Dióxido de Carbono/metabolismo , Fertilizantes , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
10.
J Phycol ; 54(6): 840-849, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171607

RESUMO

Mougeotia scalaris is a filamentous streptophyte alga renowned for light-inducible plastid rotation and microtubule-dependent polarity establishment. As a first step toward transgenic approaches we determined the 5,825 base pair genomic sequence encoding the α-tubulin1 gene (MsTUA1) of M. scalaris (strain SAG 164.80). The subcloned MsTUA1 promoter facilitated strong transgene expression in M. scalaris and tobacco leaf cells, as shown by particle bombardment and the subsequent visualization of expressed fluorescent protein markers. Our results provide a route for the genetic transformation of the filamentous streptophyte alga M. scalaris based on the endogenous TUA1 promoter.


Assuntos
Proteínas de Algas/metabolismo , Mougeotia/genética , Regiões Promotoras Genéticas/genética , Transformação Genética/genética , Tubulina (Proteína)/metabolismo
11.
Plant J ; 83(2): 263-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017378

RESUMO

Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.


Assuntos
Benzofuranos/metabolismo , Compostos de Bifenilo/metabolismo , Proteína O-Metiltransferase/metabolismo , Sequência de Aminoácidos , Malus , Dados de Sequência Molecular , Proteína O-Metiltransferase/química , Proteína O-Metiltransferase/genética , Pyrus , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
12.
Plant Physiol ; 168(2): 428-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862456

RESUMO

Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Malus/enzimologia , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Sorbus/enzimologia , Sequência de Aminoácidos , Hidrocarboneto de Aril Hidroxilases/química , Células Cultivadas , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/química , DNA Complementar/genética , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Cinética , Malus/genética , Malus/microbiologia , Microssomos/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/química , Sorbus/genética , Frações Subcelulares/enzimologia , Especificidade por Substrato , Nicotiana/metabolismo , Fitoalexinas
13.
Polymers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399866

RESUMO

The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.

14.
J Hazard Mater ; 465: 133236, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141298

RESUMO

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Assuntos
Carvão Vegetal , Quitosana , Mercúrio , Compostos de Metilmercúrio , Oryza , Selênio , Poluentes do Solo , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Mercúrio/análise , Solo
15.
Plant Physiol ; 158(2): 864-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158676

RESUMO

Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple 'Golden Delicious', nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple 'Holsteiner Cox,' heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple 'Cox Orange,' expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells.


Assuntos
Genes de Plantas , Malus/genética , Complexos Multienzimáticos/genética , Clonagem Molecular , DNA Complementar , Escherichia coli/genética , Imuno-Histoquímica , Malus/enzimologia , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética
16.
Plant Physiol ; 160(3): 1267-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992510

RESUMO

Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²âº and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.


Assuntos
Benzoatos/metabolismo , Cinamatos/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/citologia , Hypericum/enzimologia , Sesquiterpenos/metabolismo , Xantonas/metabolismo , Sequência de Aminoácidos , Benzoatos/química , Cátions , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Coenzima A Ligases/química , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hypericum/genética , Cinética , Dados de Sequência Molecular , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Filogenia , Transporte Proteico , Alinhamento de Sequência , Sesquiterpenos/química , Espectrometria de Massas por Ionização por Electrospray , Frações Subcelulares/enzimologia , Especificidade por Substrato , Xantonas/química , Fitoalexinas
17.
J Exp Bot ; 64(7): 2005-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23630326

RESUMO

The molybdenum cofactor (Moco) is the active compound at the catalytic site of molybdenum enzymes. Moco is synthesized by a conserved four-step pathway involving six proteins in Arabidopsis thaliana. Bimolecular fluorescence complementation was used to study the subcellular localization and interaction of those proteins catalysing Moco biosynthesis. In addition, the independent split-luciferase approach permitted quantification of the strength of these protein-protein interactions in vivo. Moco biosynthesis starts in mitochondria where two proteins undergo tight interaction. All subsequent steps were found to proceed in the cytosol. Here, the heterotetrameric enzyme molybdopterin synthase (catalysing step two of Moco biosynthesis) and the enzyme molybdenum insertase, which finalizes Moco formation, were found to undergo tight protein interaction as well. This cytosolic multimeric protein complex is dynamic as the small subunits of molybdopterin synthase are known to go on and off in order to become recharged with sulphur. These small subunits undergo a tighter protein contact within the enzyme molybdopterin synthase as compared with their interaction with the sulphurating enzyme. The forces of each of these protein contacts were quantified and provided interaction factors. To confirm the results, in vitro experiments using a technique combining cross-linking and label transfer were conducted. The data presented allowed the outline of the first draft of an interaction matrix for proteins within the pathway of Moco biosynthesis where product-substrate flow is facilitated through micro-compartmentalization in a cytosolic protein complex. The protected sequestering of fragile intermediates and formation of the final product are achieved through a series of direct protein interactions of variable strength.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Cofatores de Molibdênio , Ligação Proteica , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
18.
Plant Cell ; 22(4): 1216-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20424176

RESUMO

The role of sulfite reductase (SiR) in assimilatory reduction of inorganic sulfate to sulfide has long been regarded as insignificant for control of flux in this pathway. Two independent Arabidopsis thaliana T-DNA insertion lines (sir1-1 and sir1-2), each with an insertion in the promoter region of SiR, were isolated. sir1-2 seedlings had 14% SiR transcript levels compared with the wild type and were early seedling lethal. sir1-1 seedlings had 44% SiR transcript levels and were viable but strongly retarded in growth. In mature leaves of sir1-1 plants, the levels of SiR transcript, protein, and enzymatic activity ranged between 17 and 28% compared with the wild type. The 28-fold decrease of incorporation of (35)S label into Cys, glutathione, and protein in sir1-1 showed that the decreased activity of SiR generated a severe bottleneck in the assimilatory sulfate reduction pathway. Root sulfate uptake was strongly enhanced, and steady state levels of most of the sulfur-related metabolites, as well as the expression of many primary metabolism genes, were changed in leaves of sir1-1. Hexose and starch contents were decreased, while free amino acids increased. Inorganic carbon, nitrogen, and sulfur composition was also severely altered, demonstrating strong perturbations in metabolism that differed markedly from known sulfate deficiency responses. The results support that SiR is the only gene with this function in the Arabidopsis genome, that optimal activity of SiR is essential for normal growth, and that its downregulation causes severe adaptive reactions of primary and secondary metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cádmio/farmacologia , Carbono/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutagênese Insercional , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , RNA de Plantas/genética
19.
Trends Plant Sci ; 28(7): 752-764, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37002002

RESUMO

Atmospheric nitrogen (N2)-fixing legume trees are frequently used for the restoration of depleted, degraded, and contaminated soils. However, biological N2 fixation (BNF) can also be performed by so-called actinorhizal plants. Actinorhizal plants include a high diversity of woody species and therefore can be applied in a broad spectrum of environments. In contrast to N2-fixing legumes, the potential of actinorhizal plants for soil restoration remains largely unexplored. In this Opinion, we propose related basic research requirements for the characterization of environmental stress responses that determine the restoration potential of actinorhizal plants for depleted, degraded, and contaminated soils. We identify advantages and unexplored processes of actinorhizal plants and describe a mainly uncharted avenue of future research for this important group of plant species.


Assuntos
Fabaceae , Frankia , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Frankia/metabolismo , Simbiose/fisiologia , Fabaceae/fisiologia , Plantas , Verduras , Solo
20.
Environ Int ; 178: 108066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399771

RESUMO

The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/análise , Oryza/química , Solo/química , Monitoramento Ambiental , Poluentes do Solo/análise , Mercúrio/análise , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA